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Abstract

When congestion is present in a geometric graph, how can we still route efficiently? While this may

be a more simplistic problem if we had information about the entire graph, how can effective routing

still be achieved when we are constrained to using a constant amount of memory and local information?

We approach this problem by studying the half-Θ6-graph and leverage its geometric properties to route

when congestion is present, initially focusing on a congested region confined to a half-plane and later

extending to a convex polygon. We contribute deterministic local routing algorithms for both cases. The

half-plane routing algorithm is proved to be 4-competitive when routing positively and 4.9-competitive

when routing negatively. In addition, we show that no local routing algorithm can do better in the case

where our algorithm successfully finds an uncongested s− t path.

We show a negative result when the congested region becomes a convex polygon: no local routing

algorithm can do better than an O(c)-approximation of the shortest path. Regardless, we designed a

deterministic local routing algorithm for finding if an uncongested path exists within some user-defined

distance. We show that in cases where it can find an uncongested path, it produces a 13.1-approximation

of the shortest uncongested path when the user-defined distance does not exceed 13.1
2 times the polygon’s

perimeter and a 17.5-approximation when it does.

This work represents the first time congestion has been studied in the context of Θ-graphs and

introduces the first local routing algorithms developed specifically for this problem.
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CHAPTER 1

Introduction

Routing in geometric networks is a fundamental problem which has been extensively studied. When

information about the entire graph is available, we have a range of graph algorithms at our disposal

for finding a path between two vertices. Some standard graph algorithms include Dijkstra’s algorithm

(Dijkstra, 1959), Breadth-First Search (Moore, 1959) and Depth-First Search (Tarjan, 1971). While

simplistic and generally efficient, their Achilles’ heel is that they often cannot be applied in an online

setting as the network becomes too large to feasibly store. In addition, we typically only have access to

local geometric information, such as the immediate neighbourhood of a vertex, to compute the next best

move to get to our destination. This requirement for a routing strategy to be local is especially difficult

but proved to be possible when we use known geometric properties of the graph.

However, when realistically modelling a network, being able to find any path from one vertex to an-

other is the bare minimum. This challenge is compounded when we consider the possibility of network

congestion, in which certain network edges and nodes become overloaded with traffic. This may cause

delays in message routing and reduces the overall efficiency of the entire network. Hence, designing

routing strategies which can still attain acceptable path lengths under congested settings is highly moti-

vated by practical applications such as autonomous vehicle routing and network communications.

1.1 Spanners

A geometric graph G is a graph where its vertices are points in a plane and every edge is weighted by

the Euclidean distance between its endpoints. The distance dG(u, v) is defined as the sum of the weights

of the edges in the shortest path between u and v in G. A subgraph H of G is a t-spanner of G, for

some constant t ≥ 1, if for all pairs of vertices u and v, dH(u, v) ≤ t · dG(u, v). G is referred to as

the underlying graph. The spanning ratio of H is the smallest t for which it is a t-spanner. Typically,

1
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when referring to spanners, the underlying graph is the complete Euclidean graph. This is because the

main motivation behind the use of spanners is being able to approximate the complete Euclidean graph

and decrease the number of edges while preserving the length of the shortest path as closely as possible.

Some well-known classes of t-spanner networks include Delaunay triangulations and Θ-graphs. Despite

having been extensively studied for over 20 years, tight spanning ratios are only known for a select few

classes of Delaunay triangulations and Θ-graphs.

1.2 Local Routing

A routing algorithm takes a pair of vertices (s, t) as input and finds a path from s to t in the graph.

Formally, a routing algorithm is a deterministic k-local routing algorithm if it only uses information

about s, t and the k-neighbourhood of the current vertex to make its forwarding decisions. In addition, it

is assumed that the only information stored at each vertex are its immediate neighbours. Such a routing

algorithm is said to be c-competitive if the total distance travelled is never more than c times the length

of the shortest path between s and t, for all pairs of points. This constant c is otherwise referred to as

the routing ratio. In this thesis, we use the term approximation ratio interchangeably.

1.3 Problem

This thesis focuses on the half-Θ6-graph, a class of Θ-graph which has a known tight spanning ratio of 2.

While a local optimal routing algorithm for the half-Θ6-graph is known (Bose et al., 2015a), we observe

that it does not consider edge weight when deciding which vertex to traverse to next. We simulate

congestion on the half-Θ6-graph by marking some subset of vertices as "congested". Every edge with at

least one congested vertex as an endpoint will have its edge weight scaled by a factor of c. This renders

the aforementioned algorithm, as well as all known local routing algorithms to be sub-optimal on the

half-Θ6-graph. Naturally, we ask: how can we route locally and effectively when congestion is present

in the half-Θ6-graph?

1.4 Contributions

We decompose this problem by considering the congested region when it is first contained within a half-

plane and then, contained within a convex polygon. Our main contributions are the design and analysis
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of two deterministic local routing algorithms: one for routing around the congested region contained

within a half-plane and one for routing around the congested region contained within a convex polygon.

Moreover, we show that no local routing algorithm can do better than an O(c)-approximation when the

congested region is in the shape of a convex polygon, where c is the congestion factor. To the best of our

knowledge, this is the first time congestion has been studied in the context of Θ-graphs and these are the

first local routing algorithms proposed.

1.5 Outline

In Chapter 2, we delve into existing literature surrounding Θ-graphs, Delaunay triangulations and known

local routing algorithms algorithms for them. We also formalise our definition of congestion and exam-

ine what work has been done around routing in the presence of network congestion.

We introduce our first local routing algorithm for routing around a congested half-plane in Chapter 3.

This is followed by its analysis in Chapter 4, in which we explain some key design decisions and derive

its routing ratio.

In Chapter 5, we show a negative result: no local routing algorithm can do better than an O(c)-

approximation of the shortest path length when the congested region is contained in a convex polygon.

Regardless, we introduce our second local routing algorithm, which focuses on determining if there ex-

ists a completely uncongested path of a user-designated length. We follow this with some analysis on

the quality of the path produced in Chapter 6.

Finally, we conclude our findings in Chapter 7 and suggest ideas for further work.



CHAPTER 2

Literature Review

2.1 Θ-graphs and Delaunay Triangulations

Θ-graphs are a popular geometric graph for modelling wireless network topologies and belong to the

family of cone-based spanners. It was introduced independently by Clarkson (1987) and Keil (1988)

as a method to approximate the complete Euclidean graph. Θ-graphs are constructed by partitioning

the plane around each vertex into k disjoint cones, with the vertex as the apex. The orientation of the

cones is the same for every vertex, with each cone being defined by two rays at consecutive multiples

of θ = 2π/k radians apart. These cones are oriented such that the bisector of some cone coincides with

the vertical half-line that comes from above u and goes through it. Within each cone, we connect u to

the vertex v which possesses the smallest projection onto the bisector of the cone (see Figure 2.1). This

resulting graph is denoted as the Θk-graph.

FIGURE 2.1. Vertices projected onto the bisector of a cone with apex u. Vertex v is
closest and is connected by an edge to u.

4
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Ruppert and Seidel (1991) found that for θ < 2π/3 i.e. there are at least seven cones, the spanning

ratio is at most 1/(1 − 2 sin(θ/2)). The Θ4-graph and Θ5-graph have also been found to be spanners,

with a spanning ratio of at most (1 +
√
2) · (

√
2 + 36) ·

√
4 + 2

√
2 ≈ 237 (Barba et al., 2013) and√

50 + 22
√
56 ≈ 9.960 (Bose et al., 2015b) respectively. This was recently improved to 17 (Bose et al.,

2024) for the Θ4-graph and 5.70 (Bose et al., 2021) for the Θ5-graph. On the other hand, Θ-graphs with

fewer than 4 cones have been shown to not be spanners.

Bose et al. (2016) improve on the upper and lower bounds on the spanning ratio of 4 broad families of

Θ-graphs: Θ4k+2-graph, Θ4k+3-graph, Θ4k+4-graph and Θ4k+5-graph, where k ≥ 1 is an integer (see

Table 2.1). Out of these, it was shown that the Θ4k+2-graph has a tight spanning ratio of 1+ 2 sin(θ/2).

This result was obtained by generalising the inductive spanning proof of the half-Θ6-graph (Bose et al.,

2015a), for which the Θ6-graph and the half-Θ6-graph share a tight spanning ratio of 2 (Paul Chew,

1989).

Spanning ratio
Θ4-graph 17 (Bose et al., 2024)

Θ5-graph sin( 3π
10

)

sin( 2π
5
)−sin( 3π

10
)
≈ 5.70 (Bose et al., 2021)

Θ6-graph 2 (Paul Chew, 1989)
Θ4k+2-graph 1 + 2 sin(θ/2) (Bose et al., 2016)
Θ4k+3-graph cos(θ/4)

cos(θ/2)−sin(3θ/4) (Bose et al., 2016)

Θ4k+4-graph 1 + 2 sin(θ/2)
cos(θ/2)−sin(θ/2) (Bose et al., 2016)

Θ4k+5-graph cos(θ/4)
cos(θ/2)−sin(3θ/4) (Bose et al., 2016)

TABLE 2.1. Current known upper bounds on the spanning ratios for Θ-graphs. Tight
spanning ratios are in blue.

Delaunay triangulations are defined by creating an edge between u and v if there exists a circle with u

and v on the boundary and no other vertex within. While the exact spanning ratio is unknown, the current

best upper bound is 1.998, proven by Xia (2013). There exist many variants of Delaunay triangulations

as they can be defined by different distance metrics. Typically, the distance between two points u and v

in the plane is defined as ((xu − xv)
2 + (yu − yv)

2)
1
2 . This can be generalised to a family of metrics

Lp, where the distance is defined as ((xu − xv)
p + (yu − yv)

p)
1
p . Naturally, this affects the shape

of the empty "circle" i.e under L1, the shape would become a diamond. Despite knowing Delaunay

triangulations using arbitrary convex shapes are spanners, the matter of finding tight spanning ratios

is much more challenging. Tight bounds on the spanning ratio are only known when the shape is an

equilateral triangle, square, regular hexagon or rectangle (see Table 2.2).
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Shape Spanning ratio
Equilateral triangle 2 (Paul Chew, 1989)
Square/Diamond 2.61 (Bonichon et al., 2015)
Regular hexagon 2 (Perković et al., 2022)

Rectangle
√
2
√
1 +A2 +A

√
A2 + 1 (van Renssen et al., 2023)

TABLE 2.2. Known tight spanning ratios for Delaunay triangulations, where A = l/s
(aspect ratio)

2.1.1 The Half-Θ6-graph

The half-Θ6-graph was first introduced by Bonichon et al. (2010), who also contribute that it is exactly

the TD-Delaunay graph. The TD-Delaunay triangulation is a variation of the classical Delaunay trian-

gulations, described in Section 2.1, where the empty region is an equilateral triangle. This allows the

half-Θ6-graph to inherit properties of the TD-Delaunay graph, notably its tight spanning ratio of 2 as

proved by Paul Chew (1989). This also applies for Θ6-graphs as the TD-Delaunay graph is a spanning

subgraph of it, making the Θ6-graph and the half-Θ6-graph one of the few Θ-graphs where tight bounds

are known (see Table 2.1).

To construct the half-Θ6-graph, we first label the cones C̄1, C0, C̄2, C1, C̄0 and C2, in anti-clockwise

order around u, starting from the positive x-axis (see Figure 2.2). These cones are then divided into

positive and negative cones, with C0, C1 and C2 as positive and others as negative. While a traditional

Θ-graph connects u to the vertex which has the closest projection onto the bisector within every cone,

the half-Θ6-graph only connects vertices in the positive cones.

FIGURE 2.2. Cones in the half-Θ6-graph.
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2.2 Routing

2.2.1 Routing in Delaunay Triangulations

There has been much work done on routing on the classical L2-Delaunay triangulation. Bose and Morin

(2004) presented a total of five routing algorithms and proved that they are all undefeated by Delaunay

triangulations. These include greedy routing and compass routing, two simplistic and well-known rout-

ing strategies. Greedy routing, as its name suggests, always moves to a neighbouring vertex v which

minimises the Euclidean distance between v and the destination. Compass routing moves to the neigh-

bouring vertex which minimises the angle between it, the current vertex and the destination. However,

both these strategies are not c-competitive as a configuration of points can be contrived to make the path

produced arbitrarily large. Evidently, both algorithms do not fully take advantage of the known prop-

erties of Delaunay triangulations. Using the upper bound of the spanning ratio found by Dobkin et al.

(1990), Bose and Morin (2004) were able to present a (9(1 +
√
5)π/2) ≈ 45.75-competitive routing

algorithm.

Following Xia’s proof of a better upper bound of 1.998 (Xia, 2013) on the classical Delaunay trian-

gulation, Bose et al. (2017) contributed two new routing algorithms with a competitive ratio of 17.982

and were able to reduce the competitive ratio even further to 15.479. Bonichon et al. (2017) were able

to improve upon this by generalising Chew’s algorithm for the L1-Delaunay triangulation (Paul Chew,

1989) and presented a routing algorithm with a routing ratio of 5.90. This was further improved by

Bonichon et al. (2023) who proposed a routing algorithm with a routing ratio of 3.56

2.2.2 Routing in Θ-graphs

There exists a routing algorithm for Θ-graphs called cone-routing, which always moves to a vertex that is

within the same cone as t. This strategy is akin to greedy routing but has seen markedly better success, as

it was proven to be competitive on Θk-graphs for k ≥ 7. It produces a routing ratio of 1/(1−2 sin(θ/2))

(Ruppert and Seidel, 1991). However, for k ≤ 6, cone-routing produces unbounded routing ratios and

thus, fails to be competitive (Bose et al., 2020). Bose et al. (2024) introduced a local routing algorithm

for directed and undirected Θ4-graphs with a routing ratio of at most 17, being the first competitive

routing algorithm for k = 4. However, while competitive, little is known about its optimality.
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2.3 Congestion

Routing in the context of congestion has remained an expansive domain of interest in network communi-

cations. There currently exist many different ways to formulate this problem and define what congestion

is. For example, Banner and Orda (2005) formally define the network congestion factor as the maximum
fe
ce

over all edges e ∈ E, where fe is the flow going through that edge and ce is the edge capacity. This

metric is known to provide a good indication of the overall congestion present in the network. Hence,

they formulated this problem as an optimization problem of minimizing network congestion. A common

approach to handling this is dividing traffic over multiple paths, otherwise known as multipath routing.

While it has demonstrated effectiveness in reducing congestion, the algorithm presented by Banner and

Orda (2005) for this multipath route uses centralized routing of the entire network topology. Xin et al.

(2009) also present a multipath routing strategy, with routing decisions made locally rather than using

centralized information. This algorithm is reliant on neighbouring nodes communicating the congestion

status to one another to redistribute flows. Evidently, the congestion within this context is more so a

measure of the state of the entire network and thus, the most common proposed approaches do not focus

on optimising a single path.

When reframing the problem such that congestion is already present within the network, which is one

of the assumptions we make for the problem studied in this thesis, popular congestion-aware routing

algorithms still place a focus on network design rather than designing the forwarding decisions from the

perspective of traversing through the network. For example, the DyAD algorithm (Hu and Marculescu,

2004) has each vertex serve as a router that switches between two states depending on the congestion

status of its neighbours. When it encounters congestion, it would enter its adaptive routing state. Within

this state, each vertex uses an algorithm called odd-even routing (Chiu, 2000) to move the package along.

This moves away from making assumptions about the nature of the graph and using any geometric

properties to route. In addition, local congestion-aware routing algorithms are typically designed for

two-dimensional meshes, largely due to their structural regularity (Jiang, 2005). As a result, these

routing algorithms fail to generalise to networks with different structures.

We observe that the most similar model to how we modelled congestion is present in urban planning

literature. A classical problem is finding the shortest path with the presence of some special regions,

called barriers. In some instances, travel may be permitted through these barriers but at a higher cost.

These barriers are typically used to model areas where travelling or construction is not prohibited but

best avoided, such as natural landforms or residential areas. However, algorithms for this problem such
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as those proposed by Lozano-Pérez and Wesley (1979) and Xiong and Schneider (1992) do not operate

on any fixed graph and hence, allows their algorithm the flexibility to traverse to any point on the plane

to avoid these barriers.

2.4 Preliminaries

2.4.1 Congestion

We now formalise our definition of congestion. To begin approaching our problem, we make the as-

sumption that there exists a congested region in the half-Θ6-graph where all vertices which lie within

that region are considered "congested". For every edge (u, v), if either u or v is a congested vertex, its

edge weight is updated to c|uv|. Regardless of if one or both endpoints are congested, the edge weight

will be scaled by this factor of c. We refer to c as the congestion factor and it is constant across all

congested vertices.

We assume that both s and t are not within the congested region. This is because there exist instances

where if we are forced to traverse into the congested region, any attempt to avoid the congested region

will be futile.

2.4.2 Routing in the Half-Θ6-graph

The half-Θ6-graph is one of the few graphs where the tight spanning ratio and an associated optimal

routing algorithm is known. Surprisingly, there exists a separation between its spanning ratio and the best

achievable routing ratio. While it has a spanning ratio of 2, the optimal routing algorithm is guaranteed

to find a path which is at most 5√
3

times the Euclidean distance between the source and the destination

(Bose et al., 2015a). Throughout this thesis, we will refer to this algorithm as Bose et al.’s algorithm.

We hereby summarise how the algorithm operates. The algorithm first makes two distinctions: routing

negatively and routing positively. We say that we are routing positively when t is in a positive cone of

s and routing negatively when t is in a negative cone of s. Given two vertices u and v where v is in

a positive cone of u, Tuv is the canonical triangle defined by the cone of u that contains v and a line

through v that is perpendicular to the bisector of the cone (see Figure 2.3). Vertex u is situated at the

apex of Tuv.
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u

v

FIGURE 2.3. The canonical triangle Tuv.

The algorithm defines one case for routing positively and three cases for routing negatively. At every

step, the algorithm will only take vertices which are in the canonical triangle of the current vertex and t.

2.4.2.1 Positive routing

We assume without loss of generality that t is in cone Cs
0 . By the construction of the half-Θ6-graph, the

canonical triangle of s and t, Tst, will only intersect Cs
0 out of all the cones of s. As it only intersects with

a single cone, there is only one edge to follow within the canonical triangle and the routing algorithm

will follow it. It is shown that there exists an instance where the length of the path followed by any

routing algorithm is at least (
√
3 cos(α) + sin(α)) · |st| when routing from u to v, α being the angle t

creates against the bisector of Cs
0 (see Figure 2.4). We can move u as close to the left corner of Cs

0 as

possible. When α = π/6, we maximise |ut| and the overall distance travelled, producing a routing ratio

of 2. A matching upper bound is also given, showing that this is a tight routing ratio.
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u

t

α

s

FIGURE 2.4. The lower bound instance for positive routing.

2.4.2.2 Negative routing

We assume without loss of generality that t is in cone C̄s
0 and s is in Ct

0. Hence, Tts intersects C̄s
0 , Cs

1

and Cs
2 . This creates 3 different regions, X0, X1 and X2 (see Figure 2.5). The routing algorithm then

selects an edge in Tts based on the emptiness of X0, X1 and X2:

• If both X1 and X2 are empty, there must be an edge in X0. If there are multiple edges in X0,

the algorithm favours staying close to the largest empty side of Tts.

• If exactly one of X1 and X2 is empty, choose the edge in X0 which is close to the empty side

of Tts. If there are no edges in X0, the algorithm would follow the single edge in either X1 or

X2, whichever is non-empty.

• If X1 and X2 are both not empty, follow an arbitrary edge in X0. If no such edge exists, follow

the edge that is in the smaller of X1 or X2.
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X1

t

s

X0

X2

C̄s
0

Cs
1 Cs

2

FIGURE 2.5. Regions when routing negatively.

To summarise, our algorithm will choose a vertex in C̄s
0 whenever possible and favour staying close to

the largest empty side of Tts.

Analogous to the analysis for positive routing, there exists an instance where the length of the path

followed by any routing algorithm is at least (5/
√
3 cos(α) − sin(α)) · |st| (see Figure 2.6). In the

worst-case, s would be as close to the bisector of Ct
0 as possible as that would maximise the distance it

has to travel to the rightmost corner. In the configuration depicted in Figure 2.6, it is locally impossible

to determine which step is correct from s. Thus, by substituting α = 0, we obtain a routing ratio of 5√
3
.

A matching upper bound is also provided. This is an especially interesting result as the half-Θ6-graph

has a known tight spanning ratio of 2, making it the first graph where there exists a separation between

the spanning and routing ratio.
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t

s

FIGURE 2.6. The lower bound instance for negative routing.

2.4.3 Useful Lemmas

We will now introduce a few useful lemmas which come from the work of Bose et al. (2015a). Moreover,

at the end of this section, we briefly outline a popular search strategy which we will use as part of our

own algorithm.

One of the main results from Bose et al.’s algorithm is the following:

LEMMA 1. Given the canonical triangle of s and t, the length of any s − t path contained within it is

bounded by 2|st| when routing positively and 5√
3
|st| when routing negatively.

This lemma can also be rewritten in terms of the side of the canonical triangle of s and t instead of the

Euclidean distance:

LEMMA 2. Given the canonical triangle of s and t, the length of any s − t path contained within it is

bounded by 2X when routing positively and 2.5X when routing negatively, where X is the side length

of the canonical triangle of s and t.

The charging argument for Bose et al.’s routing algorithm is made by using a potential function ϕ. Each

step taken in the canonical triangle of s and t will be paid for with the potential, effectively bounding the

path length. Let us consider the canonical triangle of s and t, which has vertices labelled as s, a and b.

When routing positively, ϕ = |sa|+max(|at|, |tb|) ≤ 2X (see Figure 2.7).
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a b

s

t

FIGURE 2.7. The potential ϕ for positive routing, shown in red.

When routing negatively, we note that there are three cases (see Section 2.4.2.2). Bose et al. (2015a)

define three distinct potential functions:

• If both region X1 and X2 are empty, ϕ = |ta|+min(|as|, |sb|).

• If either X1 or X2 is empty, let x be the corner contained in the non-empty area and ϕ =

|ta|+ |sx|.

• If neither X1 nor X2 is empty, ϕ = |ta|+ |ab|+min(|as|, |sb|).

In all three cases, we observe that ϕ can be bounded by 2.5X . This is visualised in Figure 2.8.

a b

t

s

(a) Both X1 and X2 are empty.

a b

t

s

(b) Either X1 or X2 is empty.

a b

t

s

(c) Both X1 and X2 are not empty.

FIGURE 2.8. The potential ϕ for negative routing. The blue shaded region represents
emptiness.
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Finally, we observe the following:

LEMMA 3. If a vertex v can be reached by taking only vertices in a positive cone at each step from u,

the path from u to v is bounded by the side length of Tuv.

This insight stems from looking at the charging argument made to bound the path length when routing

positively. When Bose et al.’s algorithm takes a step in the positive cone, we can bound every step with

the side length of the canonical triangle. This is shown in Figure 2.9, in which v and w are both in a

positive cone of u. We observe that taking a step in the positive cone will be charged to the side of Tuv.

Once we are at w, any step in Twv can also be charged to the same side of Tuv.

u

v

w

u

v

w

FIGURE 2.9. Steps in a positive cone will always be charged to the same side of the
canonical triangle. The red represents the remaining potential and blue represents the
potential which was charged from taking the step uw.

In addition, we introduce a popular search strategy coined as the linear spiral search (Baeza-Yates et al.,

1993), which be implemented as part of our algorithm in Chapter 5. This search strategy is designed for

finding a point on a line which is n steps away. However, we are unaware of which direction along the

line the target point is. The linear spiral search algorithm is defined as starting from the origin, walking

1 unit of distance to the right, then returning to the origin and walking 2 units to the left and so on. Each

time it returns to the origin, the distance it searches on the following side is doubled. Hence, Baeza-Yates

et al. (1993) bounded the total distance travelled with 2(
∑⌊log(n)⌋+1

i=0 2i) + n = 9n and showed that this

algorithm is optimal.



CHAPTER 3

Routing around congested half-planes

In this chapter, we propose a deterministic local routing algorithm for routing around congested regions

contained within a half-plane. We define "seeing" a vertex v as having an edge to v from our current

vertex. To briefly summarise, the algorithm is split into three phases: routing, search and return. The

routing phase handles uncongested sections of the graph and instances where the algorithm has decided

that traversing through the congested region is the best option. The search phase operates by allocating

an exploration budget if we see a congested vertex that Bose et al.’s algorithm would go to. This explo-

ration budget is a set distance we can explore before we conclude that it is not reasonable to traverse any

further. This budget is updated, depending on the vertices we see along our exploration path. Finally, the

return phase is used when we exhaust our exploration budget or if there are no viable vertices to further

explore. This returns us to the best vertex to enter the routing phase and begin routing to t again.

3.1 Routing Phase

In uncongested sections of the graph, our algorithm will follow the routing algorithm proposed by Bose

et al. (2015a). It will enter the search phase (described in Section 3.2) if it encounters a vertex in the

congested region which Bose et al.’s algorithm would choose to traverse to.

3.1.1 Congested routing

This is a variant of the regular routing phase, which we would enter if our algorithm was unable to find

another path and commits to traversing through the congested region. Similarly, it follows Bose et al.’s

algorithm and checks if we have traversed to a vertex outside of the congested region at each step. If we

have, we move back to the regular routing phase so that we can potentially re-enter the search phase.

16
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3.2 Search Phase

Let s be the current vertex we are at and u be the congested vertex that Bose et al.’s algorithm would

select. Without loss of generality, let the half-plane defining the congested region intersect Cs
0 to the left

of s. Upon seeing u, a limit is set on the distance we can travel to search for an alternative path which

avoids as much of the congested region as possible. Our algorithm will keep track of a few variables,

alongside the positions of s and t:

• R: the remaining budget left.

• I: the total exploration budget allocated. This will be used to calculate how much additional

budget should be added to R once we gain more information about the path in the canonical

triangle of s and t.

• λstart: the first uncongested vertex seen in the canonical triangle of s and t (initially set to ∅).

• λend: the most recent uncongested vertex seen in the canonical triangle of s and t (initially set

to ∅).

• λdist: the length of the section of the path which may be uncongested (initially set to 0).

• ϕ: the best vertex to enter the congested region from if we cannot find an alternative path

(initially set to s).

• dist(ϕ): our current distance from ϕ.

• u: the most recent vertex seen in the canonical triangle of s and t.

We will refer to the value of I before making the most recent update to it as I ′.

Let v be the vertex we are currently at on our exploration path. We now define the criteria for v to

be updated to ϕ. This operation will be referred to as the ϕ-check in future sections. Let vertex w be

the highest congested vertex above ϕ when routing positively and the lowest congested vertex below ϕ

when routing negatively. If c|vw| ≤ c|ϕw|+ dist(ϕ), update ϕ = v and set dist(ϕ) = 0. This condition

indicates that entering the congested region at v yields a shorter path than traversing back to ϕ and

entering the congested region there. If w does not exist or the condition is not met, we leave ϕ as it is.

Consider Figure 3.1 as an example. Assuming that ϕ = s, we can see that entering the congested region

at v is more advantageous than returning back to s and routing to t if we cannot find an uncongested

path.



3.2 SEARCH PHASE 18

t

s

v

w

FIGURE 3.1. Example of when entering the congested region at v, a vertex on our algo-
rithm’s exploration path, is better than returning to s. The black dashed line represents
our algorithm’s exploration path and the red edges represent edges connected to a con-
gested vertex.

3.2.1 Positive routing

Without loss of generality, let t ∈ Cs
0 . When routing positively, we maintain an additional variable,

BACKWARDS, initialised as False, which is used to denote if we are routing away from t. This is

necessary as the closest vertex to t in Ct
2 may be below s so we may begin by searching upwards to

t in C̄t
0 and eventually be forced to backtrack. We define the exploration budget function for positive

routing B+(|su|−λdist) =
2c sin(α−π

6 )−c2−1

2(sin(α−π
6 )−c)

(|su|−λdist), where α is the angle st makes against the right

boundary of Cs
0 (see Figure 3.2). I and R are both initialised as B+(|su| − λdist). Broadly speaking,

the input parameter in B+ represents a lower-bound on the length of the congested path in Tst. Further

details on why B+ is defined this way is covered in Section 4.2.

3.2.1.1 Exploration path selection

If we are in the search phase when routing positively, that means the only vertex connected to s in Tst

is in the congested region. This implies we have to leave Tst to search for another path. To leave Tst,

we select the first uncongested vertex in a clockwise direction from the right boundary of Cs
0 . Let v

be the vertex we are currently at which is outside of Tst. If BACKWARDS is False, we select the first

uncongested vertex in a clockwise direction from the left boundary of Cv
0 which is outside of Tst. This
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FIGURE 3.2. Visualisation of α, the angle st makes against the right boundary of Cs
0 .

is with the exception of that uncongested vertex being in Ct
2 ∩ Tst. In this case, we would choose to

traverse to it.

If we see a vertex in Ct
2 and there are still uncongested vertices above us in either Cv

0 or C̄v
2 , we should

continue traversing upwards first. This may include entering Tst. As an example, let us assume we are

at vertex v in Figure 3.3. Vertex w ∈ Ct
2 could be placed arbitrarily far away, causing us to run out of

exploration budget when we traverse to it. As a result, it would be unwise to immediately traverse to any

vertex in Ct
2 if there exist unexplored uncongested vertices above us.

t

s

w

v

FIGURE 3.3. Example of when it would be unwise to immediately traverse to vertex
w ∈ Ct

2. There exists a congested vertex in Cs
0 .
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If there does not exist an uncongested path when we are in Tst, we set BACKWARDS to be True and

begin searching backwards by taking vertices in Cv
2 only.

If BACKWARDS is already set to True, we only select vertices in Cv
2 . If no such vertex exists or the edge

to this uncongested vertex has length greater than R, we enter the return phase (described in Section

3.3). There are a few options for where the first vertex in a clockwise direction is located with respect to

v:

(1) If it is in Cv
0 or C̄v

1 , proceed as we are making positive progress towards t.

(2) If it is in in Cv
2 , this indicates that there are no uncongested vertices to further explore in either

Cv
0 or C̄v

1 . This now breaks into two subcases:

(2.1) If we are connected to an uncongested vertex in Tst and we cannot see a congested

vertex in Tst which is higher than it, we should first traverse into Tst to check for a path. We

can make progress towards t by selecting vertices in the direction of t which are closest to the

right boundary of Tst. An example of this is visualised in Figure 3.4. If no path exists without

traversing through the congested region, we set the highest uncongested vertex we can reach

as ϕ and enter Case 2.2.

(2.2) If we are not connected to any uncongested vertices in Tst to further explore, we set

BACKWARDS to be True and repeatedly take vertices in Cv
2 until we either run out of budget,

vertices or make it into Ct
2.

(3) If it is in in C̄v
0 or Cv

1 , enter the return phase (described in Section 3.3).

t

s

v

FIGURE 3.4. Example of following vertices closest to the right boundary of Tst, where
the blueedges represent our algorithm’s path.
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For every vertex we traverse to, the edge length is then subtracted from R and added to dist(ϕ). This is

with the exception when we are in Case 2 of above. In addition, at every vertex v ∈ C̄t
0, we perform the

ϕ-check (described in Section 3.2). This is to ensure that we do not miss the possibility that a vertex in

C̄t
0 provides a better position to enter the congested region than the previously recorded ϕ (see Figure

3.1).

The above process is repeated until we run out of uncongested vertices to explore. If we are in Ct
2, there

are two cases:

(1) If v ∈ Ct
2 and v ∈ Tst, we directly enter the routing phase (described in Section 3.1). This is

because v must be the highest uncongested vertex in Tst and Ct
2 is free from congestion when

t lies to the right of the congested half-plane.

(2) If v /∈ Tst, we select the first vertex in an anticlockwise direction from the right boundary of

C̄0
t in either Cv

1 , C̄
v
2 or Cv

0 . For every vertex we traverse to, we subtract the edge length to it

from R. If no vertex exists within R, we enter the return phase (described in Section 3.3).

Note that we may potentially move from this case into the case above if we reach a vertex in

Tst.

If we are connected to t at any point in our exploration, we traverse directly to t.

3.2.1.2 Budget update

Let v be the vertex we are currently at. Alongside traversing to each vertex, we make updates to I and

R depending on the vertices we see in C̄v
2 or Cv

0 as we explore. This is to get a lower-bound on the

path in Tst. The general intuition is to dynamically reallocate our remaining budget R as we gain more

information on the path. Recall that we save a variable u which is the most recent vertex seen in Tst. If a

vertex w is below u, that means we have already found a path around w so we can ignore it and continue

exploring, following the same criteria outlined in Section 3.2.1.1. After handling the updates to I and

R, we update u to the highest vertex processed so we do not have to reconsider any vertices if we are

connected to the same subset of vertices further along our exploration path.

A vertex w ∈ C̄t
0 is considered unseen if it is above u. There are five cases for unseen vertices in either

C̄v
2 or Cv

0 :

(1) If v is connected to a congested vertex w, we introduce two subcases:
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(1.1) If λstart = ∅ (see Figure 3.5), this indicates that the path we see in Tst is not an

uncongested section. We update I = B+(|sw| − λdist) and expand our exploration budget by

setting R = R+ (I − I ′).

FIGURE 3.5. Case 1.1. The blue dashed line represents our exploration path.

(1.2) If λstart ̸= ∅, check if λend = ∅.

If λend = ∅, update I and R as described in Case 1.1 and set λstart = ∅. This indicates that

we previously saw a single uncongested vertex in Tst. Since it is immediately connected to w

which is congested, it is not considered an uncongested section of the path.

If λend ̸= ∅, set λdist = λdist + |λstartλend|. Update I and R as described in Case 1.1

and set λstart and λend to ∅. This is done so because seeing a congested vertex implies that the

uncongested section of the path, defined by λstart to λend, has ended. Both of these subcases

are visualised in Figure 3.6, in which λstart and λend are abbreviated to λs and λe respectively.
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(a) Case 1.2, where λend = ∅. λs being connected to another
point on the blue dashed line shows that λs has already been
seen at an earlier vertex along the exploration path.

(b) Case 1.2, where λend ̸= ∅.

FIGURE 3.6. Case 1.2

(2) If an uncongested vertex w is in Tst, we first check if |vw| ≤ R+dist(ϕ) and update ϕ = w and

dist(ϕ) = |vw| if this is the case. We do this because it means we have found an uncongested

vertex that makes more progress towards t and hence, we shouldn’t return back to the previous

ϕ. We now branch off into two cases:
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(2.1) If λstart = ∅ (see Figure 3.7), update λstart = w, I = B+(|sw| − λdist) and

R = R + (I − I ′). We note that despite w being an uncongested vertex, the path up to w

would still be subject to the congestion factor, thus warranting the update of I. This marks the

beginning of a potentially uncongested section of the path in Tst.

FIGURE 3.7. Case 2.1

(2.2) If λstart ̸= ∅, check if λend = ∅

If λend = ∅, update R = R + |λstartw|. Otherwise, if λend ̸= ∅, update R = R −

|λstartλend| + |λstartw|. Finally, update λend = w. This corresponds to extending the bound on

the uncongested section of the path in Tst.
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(a) Case 2.2, where λend = ∅.

(b) Case 2.2, where λend ̸= ∅. λ′
e represents the vertex which

was assigned to λend before seeing w.

FIGURE 3.8. Case 2.2

(3) If v is connected to a mix of congested and uncongested vertices (see Figure 3.9), process each

vertex from bottom to top by following the criteria outlined in Case 1 and Case 2.
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FIGURE 3.9. Case 3

(4) If v is connected to multiple uncongested vertices and no congested vertex in Tst (see Figure

3.10), process each vertex from bottom to top following Case 2. We note that afterwards, the

highest vertex is set to λend.

FIGURE 3.10. Case 4
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(5) If v is connected to multiple congested vertices and no uncongested vertex in Tst (see Figure

3.11), select the highest vertex to be w and follow Case 1.

FIGURE 3.11. Case 5

We note that if we are searching backwards, we will not see any new vertices which can expand our

exploration budget. Instead, we now update R = min(R, c|ϕt|). The latter parameter is a lower-bound

on the path through the congested region at ϕ, the vertex identified as the most suitable to enter the

congested region from. This adjustment tightens our exploration budget and stops our algorithm from

exploring excessively when ϕ offers a reasonably short path through the congested region.

We now outline the case for updating our exploration budget if we re-enter Tst.

Canonical triangle budget update: Recall that we update our budget by considering vertices visible

from outside Tst, which is equivalent to the path that we are currently following. As a result, when

we continue to traverse upwards in Tst towards t, we do not change R. However, we set λstart to the

first vertex in Tst we have traversed to and continue to update λend to the most recent vertex we have

traversed to Tts. This is to ensure that λdist is correctly maintained as it will be used if we have to

leave Tst. Finally, if we see a congested vertex w above us that we cannot circumvent, we will update

I = B+(|sw| − λdist) and R = R+ (I − I ′).
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3.2.2 Negative routing

Without loss of generality, let t ∈ C̄s
0 . When we route positively outside of Tst, we explore in a positive

cone of t. The opposite is true for routing negatively, which may require us to route to a vertex below t

to avoid the congested region. We maintain a few additional variables:

• R2: assists in updating our exploration budget, initialised as min(|st|,R).

• AB: assists in updating our exploration budget, initialised as 0.

• v′, v′′, A1, A2, Areturn: locations of specific vertices, initialised as ∅.

We define the exploration budget function for negative routing B−(|su| − λdist −AB) =
2c sin(α−π

6 )+c2+1

2(sin(α−π
6 )+c)

· (|su| − λdist −AB), where α is the angle st makes against the right boundary of Ct
0.

I and R are both initially set as B−(|su| − λdist −AB).

We will expand on these variables and their use cases in the following sections.

3.2.2.1 Exploration path selection

At every step in our exploration path, we subtract from R and add the edge length to dist(ϕ). Regardless

of if we are in Ct
2 or C̄t

1, if there are no vertices left to explore or traversing to our selected vertex would

cause R < 0, we enter the return phase (described in Section 3.3).

When routing negatively, there could potentially be other uncongested vertices in Tts to traverse to.

Starting at s, we first consider any uncongested vertices in Tts. If there are multiple uncongested vertices

in Tts to choose from, we choose the first vertex u anticlockwise from the right boundary of Ct
0.

If there are no vertices in Tts, we will have to traverse outside of Tts. We consider the first vertex u in

an anticlockwise direction from the right boundary of Tts that is outside of Tts. There are two cases for

where u is:

(1) If u ∈ C̄v
0 or Cv

1 , proceed as normal.

(2) If u ∈ Cv
2 , this means that there are either no vertices in C̄v

0 or if they do exist, they are blocked

by vertices in Tst.

In the latter case, a configuration such as the one depicted in Figure 3.12 could exist. Evidently, it is

unfavourable to stay close to the boundary of Tts as this would result in repeatedly going back and forth



3.2 SEARCH PHASE 29

between the outermost path and the boundary of Tts. This causes our algorithm to waste exploration

budget while making little progress towards t. The intuition is to avoid regions where a configuration of

vertices like that can occur and only enter it occasionally if it seems like there may be a path to t.

s

t

FIGURE 3.12. A configuration of points where choosing to stay close to the boundary
of Tts leads to a bad exploration path.

First, we save our current vertex as v′. Constructing a horizontal line through v, we compute its inter-

section with the right border of Tts. This intersection will be saved under the variable v′′. From v′′,

we create a line which forms a π
3 angle with the right boundary of Tts and ends at the horizontal line

through t. We will refer to the region bounded by v′′t, the horizontal line through t and the line angled at
π
3 through v′′ as A. Region A potentially contains vertices outside of Tts which are not part of a viable

path to t and hence, we should be careful with any vertices we see in this area. An example is depicted

in Figure 3.13.
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s

t

v′v′′

A

FIGURE 3.13. Construction of region A.

In our traversal, we use our secondary budget R2, which is initialised as R2 = min(R, |st|). Taking

the minimum ensures that R2 will always be less than our primary budget R. If we can see vertices

in A, we check if the the lowest vertex in Tts ∪ A is uncongested. If that is the case, we subtract the

distance we travel from R2. This is because we do not want our algorithm to traverse out arbitrarily far

if there potentially exists a path to t which is close to Tts. We had previously observed in Figure 3.12

that frequently checking in A can lead to arbitrarily poor exploration paths. As a result, our algorithm

will only check in A if there are no vertices outside of Tts∪A which can be traversed to without causing

R2 to be less than 0.

If we run out of R2, we enter A at the lowest vertex we can see. The objective at this stage is to stay in

Tts∪A for as long as possible. During our traversal in Tts∪A, we also actively update the lowest visible

uncongested vertex in Tts to be ϕ as this represents the vertex that makes the most progress towards t.

We also perform the ϕ-check at every vertex we traverse to in A. This is because vertices in A are

considered reasonably close to Tts and may offer a good position to enter the congested region at.

Let our current vertex be v. Once in A, we take vertices in Cv
1 or C̄v

0 which are in A until there are

no more to follow. If there are multiple vertices to choose from, take the first vertex in a clockwise

direction from the right boundary of Tts. These steps allow us to route along the edge of Tts so we can

gain information on the path in Tts while moving towards t. Further details on how we update our budget

when in A is covered in Section 3.2.2.2. Once there are no more vertices in A to traverse to, we check

if there is an uncongested vertex in Tts in Cv
1 . If that is the case, we traverse in Tts and repeatedly select
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vertices in Tts that are closest to the right boundary of Tts in either Cv
1 , C̄

v
0 or Cv

2 . If no uncongested

vertices exist, we leave Tts by taking the lowest uncongested vertex in either C̄v
0 or Cv

2 . If we remain in

A, we repeat the steps above to continue routing along the edge of Tts.

If no uncongested vertices exist in Tts ∪ A, we should now leave A in case there is some uncongested

path outside of A. There exist two cases now:

(1) We can see a vertex w ∈ Ct
2.

(2) We can not see a vertex w ∈ Ct
2.

Case 1: If we can see a vertex w ∈ Ct
2, we check if |wt| ≤ dist(ϕ) + c|ϕt| and traverse to w if that is

the case. This constraint ensures that we do not carelessly traverse to a vertex that may be arbitrarily far

away in comparison to a path entering the congested region. At w, we can now enter the routing phase

to t (described in Section 3.1). Otherwise, we enter the return phase (described in Section 3.3).

Case 2: In this case, we leave Tts ∪ A by repeatedly taking vertices in Cv
2 . If at any point we are

connected to a vertex w ∈ Ct
2 in either Cv

2 , we move to Case 1. If we reach a vertex outside of A in C̄t
1,

we set our current vertex as Areturn and repeat the steps outlined at the start of this section. We now set

R2 = min(R, 1.5|v′v|). This resembles an exponential search so that we do not frequently enter A and

waste our exploration budget.

If we reach Ct
2, whether from some vertex in Tts ∪ A or outside of it, we enter the routing phase to t

(described in Section 3.1). Since t is to the right of the congested half-plane, Ct
2 is guaranteed to be

congestion-free.

If we are connected to t at any point in our exploration, we should traverse directly to it as that will

conclude our search.

3.2.2.2 Budget update

Let v be the vertex we are currently at. The instructions for budget allocation outlined in Section 3.2.1.2

also apply to negative routing. One key difference is that we may be blocked by chains of vertices

in region A instead and not be able to see any vertices in Tts constantly. We split the budget update

instructions into three cases:

• We are currently not in A and outside of Tts or A does not exist
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• We are currently in A

• We are currently in Tts

Case 1: To update our budget, we consider vertices in C̄v
2 or Cv

1 . As we traverse along the exterior of

Tts ∪ A we check vertices in either C̄v
2 or Cv

1 . We use the variable u, introduced in Section 3.2 to keep

track of which vertices we have already seen. This ensures that our algorithm will not wrongly adjust

the exploration budget twice for the same vertex. At each step, we process vertices we can see in C̄v
2 and

Cv
1 from top to bottom. We follow the same instructions in Section 3.2.1.2 when dealing with vertices

in Tts.

We now define how to process vertices we see in A. We ensure that our exploration budget will never

exceed the length of the path in Tts by treating sections of the graph covered by vertices in region A as

completely uncongested. To do so, we sum up the vertical distance of an uninterrupted chain of vertices

in A. This is done by using the following two variables:

• A1: tracks the first vertex in A that we have seen

• A2: tracks the most recent vertex in A that we have seen.

As an example, in Figure 3.14, we are unable to see the path in Tts at v. As a result, we assume that the

purple region is completely uncongested to ensure we lower-bound the path in Tts.

v′

v

t

A1

A2

FIGURE 3.14. Example of consecutive vertices in A blocking our vision of the path in
Tts.
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Let us assume we now see some vertex in A which is now set to A1. Processing each vertex from top

to bottom, we update A2 to the lowest vertex in Tts ∪ A which does not have some congested vertex

in Tts separating it. We then increment AB by |A1A2|. Recall that our budget function is defined as

B−(|su|−λdist−AB), where the parameter corresponds to the lower-bound of the congested path in Tts.

Subtracting AB reflects us considering that specific portion of Tts as uncongested. If some congested

vertex in Tts can be seen, we reset A1 and A2 to ∅ as that indicates we are not being continuously

blocked by vertices in A. In Figure 3.15, assume we are at v. We process u first and set it as A1 as it

could indicate the start of a chain. However, we see a vertex x ∈ Tts, which implies that there is no path

in A. This causes us to reset A1 and set A1 = w when we process it next. It is worth noting that if x

was uncongested, we would retain A1 = u and set A2 = w.

In addition, if we see vertices in Tts which are uncongested while A1 ̸= ∅, we should not update any

of our λ variables. Recall that λdist corresponds to the length of an uncongested path in Tts. This

uncongested section is already being accounted for with AB so we do not need to keep track of it again.

v′

v

t

u = A1

w = A1

x

FIGURE 3.15. Example of vertices in A being separated by a vertex in Tts.

Likewise, if we are unable to see vertices in Tts, we should also use vertices in A to extend R. We do

so by incrementing R by |A1A2|. When a new vertex w should be updated to be A2 and A2 ̸= ∅, we

increment R and AB by |A1w| − |A1A2|.

Case 2: If we are in A, we only observe vertices in Cv
1 to update our exploration budget. This is because

we should have already processed everything above the current vertex we have entered A at. Once we
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can see vertices in Tts, the same budget reallocation steps as in Section 3.2.1.2 apply. As we are using

a positive cone, Cv
1 , to observe the path within Tts, we can see a maximum of one vertex at a time so

Case 3, Case 4 and Case 5 in Section 3.2.1.2 cannot occur.

Case 3: If we are in Tts, our algorithm will follow vertices along the right boundary of Tts. We follow

the same steps outlined in the Canonical triangle budget update case in Section 3.2.1.2, with the

difference of updating I = B−(|sw| − λdist −AB).

3.3 Return Phase

During this phase, our algorithm will backtrack to ϕ. This phase is entered when there are no more

uncongested vertices to explore or if we have exhausted the exploration budget. At each vertex we

progress to, we check if we are connected to ϕ and proceed to it if found. We enter the congested

routing phase (described in Section 3.1.1) at ϕ. Let v be our current vertex. The following two sections

will describe how to backtrack if we were routing positively or negatively before entering the return

phase.

3.3.1 Returning after positively routing

There are three possible cases when we are routing positively:

(1) We are in C̄s
1 and BACKWARDS is False

(2) We are in C̄s
1 or Cs

2 and BACKWARDS is True

(3) We are in Ct
2

We note that the first two cases are in C̄t
0.

Case 1: This is the simplest case as this means we have only been taking edges which are close to

Tst. Hence, we can backtrack by selecting vertices in either C̄v
0 and Cv

1 which are closest to the right

boundary of Tst.

Case 2: Since BACKWARDS is True, that indicates we have begun searching in the opposite direction of

t. Recall that when searching in the opposite direction, we only take vertices in the C2 cone (see Section

3.2). Thus, we can return by considering vertices in C̄v
2 . If there are multiple vertices to choose from,

we take the first vertex clockwise from the the right boundary of C̄t
0. If there are no uncongested vertices
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to further traverse to, that means we have reached the vertex where we had set BACKWARDS to be True.

We are either at ϕ or ϕ is below us so we now enter Case 1.

Case 3: Being in this case would imply that BACKWARDS is False since otherwise, we would have

entered the routing phase when we reached Ct
2. To return, we select the first vertex anticlockwise from

the right border of C̄t
0 in either C̄v

0 , C
v
2 or C̄v

1 . This is done until we can see a vertex in C̄t
0. If there are

multiple vertices to choose from, we choose the closest vertex to the right border of Tts and enter Case

1.

3.3.2 Returning after negatively routing

We split routing negatively into the following cases:

(1) Region A exists

(2) Region A does not exist

Case 1: If A exists, we may potentially have to enter A to reach ϕ. We backtrack by selecting vertices

closest to the boundary of Tts ∪ A until we reach Areturn. This variable indicates the vertex which we

last exited A at and thus, we now enter A. Since we set ϕ to be the lowest uncongested vertex in A, we

should repeatedly select the lowest vertex in C̄u
2 each time to get to ϕ. The same steps apply if we enter

the return phase while already in A.

Case 2: If region A does not exist, we can simply take vertices which are closest to the right boundary

of Tts in C̄u
2 , C

u
0 or C̄1

u until we eventually are connected to ϕ.



CHAPTER 4

Half-plane routing analysis

4.1 Budget allocation

In Chapter 3, we introduced a positive routing budget function B+ and a negative routing budget function

B− which both take some Euclidean distance as a parameter. This distance represents a lower-bound on

the length of the congested path up to the lowest vertex we can see in the canonical triangle of s and t.

Recall that our congestion-aware routing algorithm estimates this lower-bound by using the Euclidean

distance between the last vertex outside of the congested region before entering the search phase and a

congested vertex that our exploration has revealed an edge to. If multiple congested vertices are seen,

the exploration budget will be based on the furthest vertex in the direction of t.

Bose et al.’s algorithm has been proven to be an optimal local routing algorithm for the half-Θ6-graph.

Hence, our algorithm uses the path taken by Bose et al.’s algorithm to lower-bound the length of the

path in the canonical triangle of s and t. In this chapter, we will refer to the optimal path as the one

taken by Bose et al.’s algorithm. We define the set O as the set of outermost vertices in the congested

region which are connected to any vertex outside of the congested region. When our algorithm is in the

search phase, we use vertices in O that we have seen to allocate exploration budget. In other words,

our algorithm is using vertices in O to gauge the length of the optimal path in the canonical triangle.

However, the optimal path will not always follow the outermost vertices in the congested region. Hence,

we may be "blocked" by vertices in O from seeing the actual optimal path through the congested region.

As an example, consider Figure 4.1. The optimal path is outlined in green while our algorithm’s search

for an alternative path is outlined in blue. At s, our initial exploration budget is based on |su|, which

takes us to x. However, at x, we are blocked by w from seeing v. This results in the exploration budget

being based on a vertex not on the optimal path.

36
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FIGURE 4.1. Example of being unable to see the optimal path. Red shaded region
represents the congested region. Purple edges represent the optimal path and blue rep-
resents edges taken during our algorithm’s exploration.

We argue that in instances where our algorithm cannot see the optimal path, the exploration budget

allocated will never exceed the length of the optimal path. Let s be the last vertex along the optimal

path outside of the congested region and u be a congested vertex connected to s, which is also on the

optimal path in the canonical triangle s and t. Vertex u is connected to two vertices, v and w, which are

both in the canonical triangle of s and t. Let v be the vertex Bose et al.’s algorithm would choose over

w and let w be the furthest congested vertex in O which we can see. If w was on the optimal path, we

can lower-bound the optimal path length with |sw| and charge our allocated exploration budget to the

length of the optimal path. Thus, we assume that w is not on the optimal path and |uv| < |uw|. As our

algorithm can only see w, the exploration budget will now be based on |sw|.

We argue that the optimal path must include a vertex z such that the path up to z (which may or may not

include z itself) is in the congested region and |sz| > |sw|. If z is not in the congested region, it must be

connected to a congested vertex on the optimal path. This ensures that all the edges up to z are subject

to the multiplicative congestion factor. By proving the existence of z, we can lower-bound the length of

the optimal path through the congested region with |sz| and charge the allocated exploration budget of

|sw| to it. In the following proof, whenever a cone is mentioned, we are referring to the region created

by the intersection of the cone with the canonical triangle of s and t.



4.1 BUDGET ALLOCATION 38

4.1.1 Negatively routing from s

Without loss of generality, let t ∈ C̄s
0 . We set to show that z will always exist in both of the following

cases:

(1) s is to the right or directly above w.

(2) s is to the left of w.

To identify the potential locations of w, we introduce the following lemma.

LEMMA 4. Vertices v and w must be in the same cone of u.

PROOF. For the sake of contradiction, let us assume that v and w are in different cones of u. As the

optimal routing algorithm favours staying close to the empty side of Ttu, we consider an instance where

v ∈ C̄u
0 and w ∈ Cu

2 . The same argument applies if v ∈ Cu
1 and w ∈ Cu

2 . Since w is in the congested

region and s is not in the congested region, s ∈ C̄u
1 . This leaves w to be in 2 possible cones: C̄s

0 or Cs
1 .

If w ∈ C̄s
0 , the optimal routing algorithm would select w instead of u at s as it is in the same cone as t

(see Figure 4.2). This contradicts our original assumption that w is not on the optimal path. Otherwise,

if w ∈ Cs
1 , w would be contained in Tsu, which makes it closer to s than u is. Since Cs

1 is a positive

cone of s, there would be an edge from s to w instead of u (see Figure 4.3). Thus, by contradiction, v

and w must be in the same cone of u.

FIGURE 4.2. The case w ∈ C̄s
0 . The red line indicates the edge the optimal routing

algorithm would have selected.
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FIGURE 4.3. The case w ∈ Cs
1

We remark that the case when v ∈ Cu
1 and w ∈ C̄u

0 cannot exist. This is because Bose et al.’s algorithm

prioritises following vertices in the C̄0 cone, placing w on the optimal path and contradicting our original

assumption. □

We now continue to prove that the optimal path must include a vertex z such that the path up to z is in

the congested region and |sz| > |sw|. This proof makes extensive use of the following property:

OBSERVATION 1. Within any triangle, the largest angle must be opposite the longest side.

We also introduce a useful lemma for our proof:

LEMMA 5. For any pair of vertices, s and z, that lie in opposite cones of w, |sz| > |sw|.

PROOF. Without loss of generality, let us assume s ∈ C̄w
1 and z ∈ Cw

1 . As two cones separate

C̄w
1 and Cw

1 , ∠swz must be at least 2π
3 . Depending on the position of z with respect to s, ∠swz can

constructed in either a clockwise or anticlockwise direction from sw (see Figure 4.4). We take whichever

direction yields ∠szw < π as it ensures △szw remains a valid triangle. By Observation 1, this makes

|sz| the largest side of △szw. In the case where s, w and z are collinear, sz would be an extension of

sw, making it trivially true that |sz| > |sw|. Therefore, if a vertex z lies in the cone of w which is

opposite to the cone that contains s, |sz| > |sw|.
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(a) Anticlockwise from sw (b) Clockwise from sw

FIGURE 4.4. Construction of ∠szw (negative routing)

□

4.1.1.1 Case 1

We now cover the case where s is to the right or directly above w. As a result of Lemma 4, v and w

must both be in a negative cone of u. Without loss of generality, let v and w be in C̄u
0 and let w be to the

right of v. As s is assumed to be to the right of w or above w, u or is either in C̄s
0 or Cs

1 . We can now

identify three subcases:

CASE 1.1: v and w are both in C̄s
0 .

CASE 1.2: v ∈ Cs
1 and w ∈ C̄s

0 .

CASE 1.3: v and w are both in Cs
1 .

For each of the subcases, we argue that the optimal routing algorithm must traverse to a vertex z such

that |sz| > |sw|. Under the general position assumption, we note that collinearity between s, w and z

can only occur in Case 1.3.

Case 1.1: Let z be a vertex on the optimal path which is either inside the congested region or connected

to a vertex in O. The half-plane defining the congested region separates w and s. Since w is within the

congested region, at least part of Cw
1 must be within the congested region. For a path to go from v to t

without going through w, there must be a vertex which lies in Cw
1 (see Figure 4.5). This is because any
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vertex in C̄w
0 will connect to w and not any vertex above w if Cw

1 is empty. In addition, the half-Θ6-

graph is planar and uw separates v from any potential vertices to the right of uw. Thus, there must be

at least one vertex on the optimal path in Cw
1 . If there exist multiple vertices on the optimal path in Cw

1 ,

let z be the highest vertex amongst them. This ensures that the path up to z is in the congested region as

there are no guarantees that the entirety of Cw
1 is within the congested region. Case 1.2: The argument

FIGURE 4.5. Potential locations for z in Case 1.1 (negative routing)

for Case 1.2 is analogous to Case 1.1. There must also exist a z on the optimal path in Cw
1 (see Figure

4.6).

FIGURE 4.6. Potential locations for z in Case 1.2 (negative routing)
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We now argue that any point z in Cw
1 will result in |sz| > |sw|, given s is to the right or directly above

w. Let us consider the triangle △szw. To minimise |sz|, z would lie arbitrarily close to the dashed

border dividing Cw
1 and C̄w

2 (see Figure 4.7 and Figure 4.8). As s ∈ Cw
0 , C̄w

2 separates s and z. Let

α be the angle that s makes with the left cone boundary of Cw
0 . We can define ∠swz ≥ π

3 + α. As

we have assumed that s is to the right or directly above w, α ≥ π
6 . This results in ∠swz ≥ π

2 . Using

Observation 1, we can conclude that |sz|, which is opposite ∠swz, is the largest side in △szw and

hence, any z ∈ Cw
1 will imply |sz| > |sw|.

FIGURE 4.7. Minimising ∠szw in Case 1.1 (negative routing)

FIGURE 4.8. Minimising ∠szw in Case 1.2 (negative routing)
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As a result, there must exist a vertex z on the optimal path, such that |sz| > |sw| in Case 1.1 and Case

1.2. Moreover, we can observe that our proof does not make use of the position of v and hence, v does

not impact the potential locations of z. Thus, we can group future subcases where only the position of v

differentiates them.

Case 1.3: A similar argument can be made for Case 1.3, in which there must be a z ∈ Cw
1 to ensure that

the optimal path does not include w (see Figure 4.9).

FIGURE 4.9. Potential locations for z in Case 1.3 (negative routing)

We first observe that s ∈ C̄w
1 and z ∈ Cw

1 . With s and z being in cones of w that are directly opposite one

another, we can apply Lemma 5. Thus, there must exist a z on the optimal path through the congested

region, such that |sz| > |sw|.

4.1.1.2 Case 2

If s is to the left of w, w must be in C̄s
0 . We argue that w cannot be in Cs

2 . Vertex v being positioned to

the left of w while also being in the congested region suggests that the congested region is to the left of

the line defining it. If w ∈ Cs
2 , there does not exist a half-plane separating s and t from the congested

region, contradicting that s and t are not in the congested region. As a result, w must be in C̄s
0 and only

the first two subcases from Case 1 apply:
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CASE 2.1: v and w are both in C̄s
0 .

CASE 2.2: v ∈ Cs
1 and w ∈ C̄s

0 .

Analogous to Case 1, v’s position is not relevant to the proof and we can make the same argument that

holds for both subcases. For visualisation purposes, we will use Case 2.1. Let z be the first vertex

on the optimal path which is outside of the congested region. As s is to the left of w and outside of

the congested region, the half-plane must have a negative slope. This implies that Cw
1 will be entirely

contained in the congested region and hence, z can only lie in C̄w
0 or Cw

2 (see Figure 4.10).

FIGURE 4.10. Potential locations for z in Case 2 (negative routing)

If z ∈ C̄w
0 , we can apply Lemma 5 as s and z are in opposite cones and conclude that |sz| > |sw|.

Otherwise, if z ∈ Cw
2 , we follow a symmetrical argument to the one made for Case 1.12. Consider

∠szw clockwise from sw. Let α be the angle that s makes with the right boundary of Cw
0 (see Figure

4.11). Therefore, we can express ∠swz = π
3 + α. As we have assumed that s is to the left of w, α > π

6 .

This results in ∠swz > π
2 , making it the largest angle in △szw. Therefore, we can also conclude that

|sz| > |sw|.
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FIGURE 4.11. Minimising ∠szw in Case 2 (negative routing)

4.1.2 Positively routing from s

Without loss of generality, let t ∈ Cs
0 . Using the same setup of vertices, u, v and w, as described in

Section 4.1, we can now consider two cases:

(1) w is in a negative cone of t.

(2) w is in a positive cone of t.

Let z be either the first vertex on the optimal path after leaving the congested region or an arbitrary

congested vertex on the optimal path. The crux of the argument for both cases is that z must lie in

Cw
0 . Since s ∈ C̄w

0 , we can use Lemma 5 to conclude that |sz| > |sw|. This argument will be further

expanded on in the following sections.

4.1.2.1 Case 1

If w is in a negative cone of t, w ∈ C̄t
0. This leaves two subcases for where v is with respect to t:

CASE 1.1: v ∈ C̄t
0.

CASE 1.2: v ∈ Ct
1.
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The same argument holds regardless of the position of v. For visualisation purposes, we will use Case

1.1. As the half-plane defining the congested region separates w and t, it must intersect Cw
0 , causing a

section of Cw
0 and everything to the left of it to be in the congested region. As C̄w

2 is to the left of Cw
0 ,

C̄w
2 must be entirely in the congested region. Thus, to leave the congested region, the optimal path must

have at least one vertex in Cw
0 (see Figure 4.12).

FIGURE 4.12. Potential locations for z in Case 1 (positive routing)

If there exist multiple vertices on the optimal path in Cw
0 , select the leftmost vertex as z to ensure that

the path up to z is congested. An example is illustrated in Figure 4.13, in which the leftmost vertex in

Cw
0 is selected as z. This makes z the first vertex on the optimal path outside of the congested region.

As z is connected to a vertex in A, the path from s to z is guaranteed to be entirely congested.
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FIGURE 4.13. Selecting the leftmost vertex in Cw
0 as z, highlighted in blue. Optimal

path is outlined in bold; red line denotes the half-plane.

4.1.2.2 Case 2

Without loss of generality, let w ∈ Ct
1. If w ∈ Ct

1, then v ∈ Ct
1 since v is assumed to be to the left of

w. There must be a vertex z in Cw
0 on the optimal path for it to not include w (see Figure 4.14). This

is because there cannot exist an edge connecting a vertex a ∈ C̄w
1 to a vertex in C̄w

2 as w would have a

shorter projection onto the bisector of Ca
1 . Analogous to Case 1, we select the leftmost vertex to be z if

there are multiple vertices on the optimal path in Cw
0 , completing this case.

This concludes our proof that using the straight line distance from s to any visible congested vertex will

not overestimate the length of the optimal path.
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FIGURE 4.14. Potential locations for z in Case 2 (positive routing)

4.1.3 Subtracting λdist

We continue to argue that we will never overestimate the length of the optimal path when λdist ̸= 0. We

observe that uncongested vertices can exist in the canonical triangle of s and t, which leads to potential

uncongested sections of the path. The parameter in both B+ and B− involves subtracting λdist from the

Euclidean distance of s to the lowest visible congested vertex in the canonical triangle of s and t. We

first make the following observation:

OBSERVATION 2. The length of the projection of a line segment is at most the length of the line segment

itself.

Recall that λdist is the sum of uncongested path segments. As a result of Observation 2, directly sub-

tracting λdist will continue to maintain a lower-bound on the length of the congested path. For example,

consider Figure 4.15. Since u is the highest congested vertex visible from v, a vertex on our exploration

path, |su| will be a parameter in the exploration budget function. On our exploration path, we have

seen two uncongested vertices, λs and λe, in the canonical triangle Tst. If we assume the optimal path

traverses to these vertices before going from λe to u, we technically only need to subtract the perpen-

dicular projection of λsλe onto su. This is shown in blue in Figure 4.15. Since we directly subtract

λdist = |λsλe|, we will be subtracting more than necessary but doing so will safely ensure that we never
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overestimate the length of a congested path. Using Observation 2 again, we can also see that the dis-

tance |λeu| will exceed |λ′
eu|, where λ′

e is the point on su when we project λe onto it. This reinforces

that using |su| as a lower-bound for the congested path is correct. The same argument can be applied

t

s

λs
v

λe

u

FIGURE 4.15. Example of how subtracting λdist is a lower-bound. The blue line seg-
ment represents the projection of λsλe onto su.

for subtracting AB when we route negatively. This concludes our proof that our algorithm will never

overestimate the length of the optimal path.

4.2 Approximation ratio

To evaluate the effectiveness of our algorithm, we compute the approximation ratio of our algorithm’s

path length against the shortest path length. We make the following claim:

THEOREM 1. The half-plane routing algorithm produces a 4-approximation of the shortest path length

when routing positively and a ((2
√
3 + 5)/

√
3) ≈ 4.9-approximation when routing negatively.

PROOF. Let s be the vertex we start from. Any distance we travel using Bose et al.’s algorithm in the

routing phase would improve our approximation ratio so let us assume we immediately see a congested

vertex we would normally traverse to. We consider the following four cases:
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(1) There is no path around the congested region and the shortest path is directly through the

congested region in the canonical triangle of s and t.

(2) Our algorithm runs out of exploration budget while the shortest path can be found if we tra-

versed ϵ further than the allocated exploration budget.

(3) Our algorithm returns back to ϕ while the shortest path enters the congested region at some

vertex v on the exploration path.

(4) Our algorithm finds an alternative path outside of the congested region after using up the entire

exploration budget.

Let x denote our exploration budget. We begin by observing that x is based on the location of the furthest

congested vertex in the direction of t. Thus, to upper-bound the distance our algorithm will traverse, we

place x arbitrarily close to t. This also allows us to lower-bound the path in the canonical triangle of s

and t with c|st|. To maximise the path length taken in the return phase (described in Section 3.3), we

also ensure that ϕ = s for the entire duration of the search phase (described in Section 3.2).

In Case 1, Case 2 and Case 3, our algorithm will expend x to explore out and x to return back to s.

This results in a path length of 2x, plus the congested path length in the canonical triangle of s and t.

Thus, our analysis will centre around lower-bounding the shortest path length to determine which case

will produce the largest approximation ratio. In our analysis, we will use the following property:

LEMMA 6. In △abc, c2 = a2 + b2 − 2ab · cos(γ), where γ is the angle opposite side c.

We begin by concluding that Case 4 will not contribute to the approximation ratio as it has a smaller

approximation ratio when compared to Case 2. This is because not having to return to s will greatly

reduce the length of the path produced by our algorithm, which reduces the approximation ratio. Further

details for this specific case are analysed in Section 4.3.

4.2.1 Positive routing

Without loss of generality, let us assume t ∈ Cs
0 . We begin by proving the first claim of Theorem 1:

LEMMA 7. As c → ∞, the half-plane routing algorithm produces a 4-approximation of the length of

the shortest path when routing positively.
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PROOF. When routing positively from s, the path in the canonical triangle Tst is upper-bounded by

2c|st| as a result of Lemma 1. The lower-bound on the shortest path is c|st|. Let |st| be the unit of

length. From Case 1, we obtain the following approximation ratio:

2x+ 2c

c
(4.1)

In Case 2, we consider the scenario where we run out of budget, traversing a distance of x towards t

in C̄s
1 . Let us assume there exists a single vertex x0 ∈ Ct

2 which has an Euclidean distance of x away

from s. As a result, we immediately run out of budget traversing to x0. To lower-bound the length of

the shortest path, let us assume that if we had traversed an arbitrarily small distance of ϵ further, there

exists a direct edge to t. The length of the shortest path can now be expressed as x+ |x0t|.

To minimise |x0t|, x0 should be close to the horizontal line through t (see Figure 4.16). Consider ∠stx0.

We can express ∠stx0 as 2π
3 −α, where α is the angle st makes against the right boundary of Cs

0 . Using

Lemma 6 on △stx0, we can express:

x =

√
|x0t|2 + 1− 2|x0t| cos(

2π

3
− α)

This can be solved for a closed-form solution of |x0t|:

|x0t| =
1

2

(
2 sin

(
α− π

6

)
−
√
2

√
2x2 − sin

(
2α+

π

6

)
− 1

)

We now obtain the approximation ratio for Case 2:

2x+ 2c

x+ 1
2

(
2 sin

(
α− π

6

)
−
√
2
√
2x2 − sin

(
2α+ π

6

)
− 1

) (4.2)
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FIGURE 4.16. Case 2 in positive routing. The red edge is our exploration, x, and the
blue is |x0t|.

Finally, we argue that Case 3 does not contribute to the approximation ratio as Case 1 will have an

approximation ratio that is at least as large. Recall our initial assumption that ϕ remains as s. This

implies that every vertex we have explored to is at least |ϕt|+ 1
cdist(ϕ) ≥ |st| away from t, as otherwise

they would have been set to ϕ (described in Section 3.2). As a result, the length of the shortest path from

any vertex outside of Tst cutting through the congested region must be at least c|st|. This is already

covered in Case 1 (see Equation 4.1).

Thus, to minimise the approximation ratio, an important question arises: how can we optimise x to

minimise max(Equation 4.1,Equation 4.2)? We observe that when x → ∞, Equation 4.1 approaches

∞ while Equation 4.2 approaches 1, encapsulating the trade-off between exploring too conservatively

and exploring excessively. This indicates that the minimum should be at the intersection of Equation 4.1

and Equation 4.2. Equating Equation 4.1 and Equation 4.2, we obtain the following expression for x:

x =
2c sin

(
α− π

6

)
− c2 − 1

2
(
sin

(
α− π

6

)
− c

) (4.3)

As sides |sx0| and |st| are fixed in length, we observe that increasing α in Figure 4.16 will only increase

|x0t|. Consequently, this will increase the length of the shortest path and lower the approximation ratio.

Hence, we substitute in the extreme value 0 for α to get a more simplified expression for x:

x =
c2 + c+ 1

2c+ 1
(4.4)
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As we have balanced Equation 4.1 and Equation 4.2 with x, we can substitute x into either equation to

obtain the final approximation ratio. For simplicity, we’ll substitute Equation 4.4 into Equation 4.1.

2x+ 2c

c
=

2( c
2+c+1
2c+1 ) + 2c

c
=

6c2 + 4c+ 2

2c2 + c

= 3 +
c+ 2

2c2 + c

(4.5)

Since c+2
2c2+c

is a monotonically decreasing function for c ≥ 1, let c = 1 to maximise Equation 4.5. This

results in a 4-approximation of the shortest path when routing positively and concludes our proof for

Lemma 7.

We also observe that our algorithm approaches a 3-approximation of the shortest path when we take the

limit of c → ∞ in Equation 4.5. This indicates our algorithm will perform better in cases where the

congestion factor is higher. □

4.2.2 Negative routing

Without loss of generality, let us assume t ∈ C̄s
0 . We continue proving the second claim of Theorem 1:

LEMMA 8. The half-plane routing algorithm produces a ((2
√
3 + 5)/

√
3)-approximation of the length

of the shortest path when routing negatively.

PROOF. When routing negatively from s, the path in the canonical triangle Tts is upper-bounded by
5√
3
c|st| as a result of Lemma 1. Let |st| be the unit of length. The lower-bound on the shortest path is

c|st|. This leads to the following approximation ratio for Case 1:

2x+ 5√
3
c

c
(4.6)

In Case 2, we consider traversing x down towards t in Cs
2 and running out of budget. Let us assume

there exists a direct edge to t if we had traversed an arbitrarily small distance of ϵ further. We can express

the shortest path length as x+ |x0t|.

Analogous to the analysis for routing positively (see Section 4.2.1), we minimise |x0t| by placing it on

the horizontal line through t (see Figure 4.17). Once again, we consider ∠stx0, which can be expressed

as π
3 + α.
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FIGURE 4.17. Case 2 in negative routing.

Applying Lemma 6 on △stx0, we obtain the following expression for x:

x =

√
|x0t|2 + 1− 2|x0t| cos(

π

3
+ α)

This can be rearranged for a closed-form solution of |x0t|:

|x0t| =
1

2

(√
2

√
2x2 − sin

(
2α+

π

6

)
− 1− 2 sin

(
α− π

6

))
This gives us our approximation ratio for Case 2:

2x+ 5√
3
c

x+ 1
2

(√
2
√
2x2 − sin

(
2α+ π

6

)
− 1− 2 sin

(
α− π

6

)) (4.7)

The same argument made in Section 4.2.1 for why Case 3 does not contribute to the approximation ratio

also applies to negative routing. As a result, we can directly equate Equation 4.6 and Equation 4.7 to

find the value of x which produces the smallest approximation ratio. This gives us:

x =
2c sin

(
α− π

6

)
+ c2 + 1

2
(
sin

(
α− π

6

)
+ c

) (4.8)
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In Figure 4.17, we observe that |x0t| will be minimised if we increase α. Thus, we substitute the extreme

value of α = π
3 into Equation 4.8 to obtain the following expression for x:

x =
c2 + c+ 1

2c+ 1
(4.9)

Note that we arrive at the same exploration budget as when we substitute in α = 0 for the positive

routing budget (see Equation 4.3). With Equation 4.6 and Equation 4.7 balanced, we substitute Equation

4.9 into Equation 4.6:
2( c

2+c+1
2c+1 ) + 5√

3
c

c
=

2c2 + 2c+ 2

2c2 + c
+

5√
3

= 1 +
5√
3
+

c+ 2

2c2 + c

(4.10)

Since c+2
2c2+c

is a monotonically decreasing function for c ≥ 1, we consider c = 1 to maximise Equation

4.10. This results in an approximation ratio of (2
√
3 + 5)/

√
3 for negative routing and concludes our

proof for Lemma 8. □

Theorem 1 follows from Lemma 7 and Lemma 8. □

4.3 Path quality

We now turn our attention to the case where we find an uncongested path from s to t. We make the

following claim:

THEOREM 2. If an uncongested path is found after entering the search phase, the path will be a 2-

approximation of the shortest path when routing positively and a 4.4-approximation when routing neg-

atively. This is the lowest approximation ratio that a local routing algorithm can achieve.

Let s be the vertex we start the search phase from and v be a vertex on the shortest path which our

algorithm will eventually converge back into. Without loss of generality, let the congested region be to

the left of s. We refer to the length of the shortest path as σ in the following sections.

4.3.1 Positive routing

Without loss of generality, let t ∈ Cs
0 . Since we are entering the search phase from s, the only vertex

s is connected to in Tst must be in the congested region. Hence, both u and v must be outside of Tst.
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If the closest vertex to t in Ct
2 is below s, our algorithm may erroneously search forwards in the region

defined by C̄s
1 ∩ C̄t

0, only to be blocked by some congested vertex just before reaching t. Any edges our

algorithm’s path shares with the shortest path will improve the approximation ratio so we assume that

our algorithm’s path diverges from the shortest path at s. Let v be the closest vertex to t in Ct
2 which

is below s. Thus, σ = |sv| + |vt|. To minimise σ, we place v a small distance below the horizontal

boundary of Cs
2 . We maximise the length of the path produced by our algorithm by placing u as close

to t as possible and then having us return to v.

Since our algorithm stays close to the right boundary of Tst, we may follow a zigzag configuration of

points such as the one depicted in Figure 4.18. This occurs when our algorithm takes a step in the C0

cone too close to the right boundary of Tst and is blocked by a congested vertex. To minimise our

algorithm’s progress, we assume the next step in the C̄1 cone is almost horizontal. The following step

will traverse as close to the boundary of Tst using the C0 cone and the pattern repeats once more. We

observe that each step in the pattern forms an equilateral triangle against the line su, implying that

we have to travel two units of distance to move one unit of distance along su. This statement holds

regardless of the amount of equilateral triangles in our pattern.

We note that the region defined by C̄s
1 ∩ C̄t

0 is also an equilateral triangle, with a maximum side length

of |st| (see Figure 4.18). As a result, we have |su| = |st| = |sv| = |vt|. To get from s to u, it will take

us 2|st|. Hence, we can express the length of our path as 4|st| and σ = 2|st|. This leads to our algorithm

producing a 2-approximation of σ.

FIGURE 4.18. Orange shows the shortest path and blue shows the suboptimal path our
algorithm takes before converging back into the shortest path (positive routing). Edges
which are not on either our algorithm’s path nor on the shortest path are omitted.
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We will now argue that this instance yields the worst-case approximation ratio across all graphs. First,

we observe that moving t will decrease the area of C̄s
1 ∩ C̄t

0. In turn, this will decrease the length of our

algorithm’s search path and improve the approximation ratio. We now fix t to consider the positions of

u and v. We make use of the following observation in our proof:

OBSERVATION 3. In an equilateral triangle, the longest distance defined by any two points in the trian-

gle is equal to the side length.

Let u′ be an alternative position for u. If we place u′ away from t anywhere within C̄s
1 ∩ C̄t

0, we can

conclude that 2|su′| + |u′v| ≤ 2|su| + |uv| due to Observation 3. This results in a shorter path length

produced by our algorithm and hence, an improved approximation ratio. If u′ ∈ Cs
2 , there does not exist

any vertices in C̄s
1 and we are immediately searching backwards. Since s is only connected to one vertex

in Cs
2 , this implies that u′ must be on the shortest path. Therefore, placing u′ = u will maximise our

approximation ratio.

Fixing u to be as close to t as possible, we now consider v′, an alternative position for v. Unlike u′, the

position of v′ also affects the length of the shortest path. We first observe that v′ /∈ C̄s
1 . The region of

C̄s
1 is divided into two parts: C̄s

1 ∩ C̄t
0 and C̄s

1 ∩Ct
2. If v′ ∈ C̄s

1 ∩ C̄t
0, v′ cannot be directly connected to

t and will be connected to u instead. On the other hand, if v′ ∈ C̄s
1 ∩ Ct

2, there is no direct edge from

v′ to s because u is closer to s than v′ is. Hence, v′ must be in Cs
2 . We observe that v′ also cannot be in

Cs
2 ∩ C̄t

0 as it would be connected to u instead of t. This leaves the region defined by Cs
2 ∩ Ct

2 to be the

only viable region for v′.

We observe that t, v and v′ creates a triangle with ∠tvv′ ≥ 2π
3 . Using Lemma 6, we can express

|v′t| as
√

|st|2 + |vv′|2 − 2|st||vv′| cos(∠tvv′). We also observe that s, v and v′ form a triangle with

∠svv′ = 5π
3 − ∠tvv′. Hence, we can express |sv′| as

√
|st|2 + |vv′|2 − 2|st||vv′| cos(5π3 − ∠svv′).

This is visualised in Figure 4.19.
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t

s

u

v

v′

4tvv′

4svv′

FIGURE 4.19. Visualisations of △tvv′ and △svv′.

We can express the approximation ratio as:

2|st|+ 2
√
|st|2 + |vv′|2 − 2|st||vv′| cos(∠svv′)√

|st|2 + |vv′|2 − 2|st||vv′| cos(∠svv′) +
√

|st|2 + |vv′|2 − 2|st||vv′| cos(5π3 − ∠svv′)

Formally, we can take the derivative of this function with respect to |vv′| and observe that it is a mono-

tonically decreasing function for |vv′| > 0 and 2π
3 ≤ ∠svv′ < π. However, computing this can be rather

involved and thus, we offer a more intuitive explanation. We first observe that the maximum difference

between cos(∠tvv′) and cos(5π3 − ∠tvv′) is 1
2 at ∠tvv′ = 2π

3 . This is because the difference between

the two cosine functions, cos(∠tvv′)− cos(5π3 − ∠tvv′), is a decreasing function for 2π
3 ≤ ∠tvv′ < π.

Therefore, we obtain:

√
|st|2 + |vv′|2 − 2|st||vv′| cos(∠svv′) ≤

√
|st|2 + |vv′|2 − 2|st||vv′| cos(5π

3
− ∠svv′) +

√
|st||vv′|

Using this bound in the numerator of our approximation ratio, we get:

1 +
2|st|+

√
|st||vv′|√

|st|2 + |vv′|2 − 2|st||vv′| cos(∠tvv′) +
√

|st|2 + |vv′|2 − 2|st||vv′| cos(5π3 − ∠tvv′)
(4.11)

Given that cos(∠tvv′) and cos(5π3 − ∠tvv′) are both negative for 2π
3 ≤ ∠tvv′ < π, it is clear that the

denominator of the second term in Equation 4.11 grows faster than the numerator. As a result, we can

infer that this is a decreasing function as we increase |vv′| and vary ∠tvv′.

The edge case where ∠tvv′ = π translates to moving v′ downwards while keeping it parallel along the

right boundary of C̄t
0. Thus, ∠svv′ = 2π

3 and |uv′| = |uv|+ |vv′| = |st|+ |vv′|. We get the following
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approximation ratio:

4|st|+ 2|vv′|√
|st|2 + |vv′|2 + |st||vv′|+ |st|+ |vv′|

This function is also a monotonically decreasing function as we increase |vv′|. Therefore, this proves that

placing v′ anywhere other than v will decrease the approximation ratio. The worst-case configuration,

therefore, occurs when v′ = v.

For completeness, we also argue that subdividing the edges and adding more vertices along our path will

not affect the maximum approximation ratio. We do this by showing that placing a new vertex w in any

position will result in an approximation ratio smaller or equal to 2. First, we show that placing w in any

region other than C̄s
1 ∩ C̄t

0 will not increase the approximation ratio. There are three regions for w to be

in if it is not in C̄s
1 ∩ C̄t

0:

(1) If w ∈ Cs
2 ∩ C̄t

0 and in Tsv is, s would not be connected to v, forcing the shortest path to go

through w to get to v. As a result, this would increase the length of the shortest path since the

distance from s to v is no longer a straight line distance. Otherwise, w is neither on the shortest

path nor on our algorithm’s path.

(2) If w ∈ Cs
2 ∩ Ct

2, w is neither on the shortest path nor on our algorithm’s path.

(3) If w ∈ C̄s
1 ∩ Ct

2, there exists two subcases where adding w will affect either the length of our

path and/or the length of the shortest path:

(3.1) If w ∈ Cu
2 and is closer to u than v is, u would be connected to w. This also results

in v being connected to w and can only decrease our approximation ratio since the length of

our path remains the same while the length of the shortest path may increase. This is because

|uw|+ |wt| ≤ |uv|+ |vt|, given |uw| < |uv| and u being close to t.

(3.2) If u is still connected to v, then w could be above u. If w is closer to v than t is in

Cv
0 , then v is connected to w instead. The distance from v to t is now no longer bounded by

a straight-line distance and hence, uniformly increases the distance for both the shortest path

and our algorithm’s path. We observe that for any fraction a
b , where a > b and x ≥ 0, then

a
b > a+x

b+x . This shows that adding this additional distance caused by adding w will decrease

the approximation ratio.



4.3 PATH QUALITY 60

t

s

u

v

Case 1

Case 3.1

Case 3.2

FIGURE 4.20. Cases where adding w will affect the length of the algorithm’s path
and/or the length of the shortest path.

If w is in C̄s
1 ∩ C̄t

0, we argue that the length of the path produced by our algorithm will either remain

the same or decrease. Placing w within any of the equilateral triangles in our path from s to u will

decrease the length of our path. For example, considering △v1v2v3 in Figure 4.21, placing w anywhere

within △v1v2v3 will cause v1 to no longer be connected to v2. This removes v2 from our algorithm’s

exploration path. Using Observation 3, we can conclude that |v1w|+ |wv2| ≤ |v1v2|+ |v2v3| and thus,

adding w will improve the approximation ratio.

FIGURE 4.21. Configuration of points in the equilateral triangle pattern.
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If w ∈ Cu
2 , we argue that we can charge any step we take to |st|. Since every step we take when searching

backwards is in the C2 cone of our current vertex, which is a positive cone, we can apply Lemma 3. This

allows us to conclude that getting from u to v is bounded by |st|, regardless of the amount of vertices

between them. This completes our proof that the worst-case configuration is as depicted in Figure 4.18.

We will now show that this is the lowest approximation ratio that a local routing algorithm can achieve.

Consider Figure 4.22. In the two cases depicted, a local routing algorithm would not be able to distin-

guish between them. Vertex u is placed in C̄s
1 ∩ C̄t

0 arbitrarily close to the right boundary of Tst whereas

vertex v is placed in Cs
2 ∩ Ct

2 arbitrarily close to the horizontal line going through s.

If a routing algorithm chooses to go to v, the graph could be an instance of Figure 4.22(a), where it

would have a path length of 2|st| when the path via u has length |st|. Conversely, the graph could be

an instance of Figure 4.22(b) if we go to u, leading to a path length of 4|st| while going through v will

give a path length of 2|st|. This results in the 2-approximation as previously analysed. By adding Ω(k)

points on all edges connected to s, we can obscure any information and ensure that this statement holds

for all k-local routing algorithms.

(a) (b)

FIGURE 4.22. Instances where a local routing algorithm would not be able to distin-
guish between when starting from s. Edges which are not on either our algorithm’s path
nor on the shortest path are omitted.
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4.3.2 Negative routing

Without loss of generality, let t ∈ C̄s
0 and the congested half-plane be to the left of s. We argue that

the worst-case approximation ratio occurs when the shortest uncongested path leaves Tts and re-enters

Tts ∪ A. However, we observe that re-entering and exiting Tts ∪ A can be costly to our exploration

budget. Hence, we construct a graph configuration where it is difficult to locally determine when to

enter Tts ∪A.

Let both the shortest uncongested path and our path exit Tts at s and let the shortest path re-enter Tts∪A

at some vertex w ∈ A, which has an arbitrarily short path to t. By alternating congested and uncongested

vertices in Tts ∪A, we force our algorithm to immediately exit Tts ∪A if we entered at any point before

w. This makes it such that our algorithm is not able to continue making any progress towards t while in

Tts ∪ A. In addition, we ensure that the lowest vertex we can see is usually uncongested. This wrongly

indicates to our algorithm that there could be an uncongested path in A and causes us to consistently

subtract from R2. In turn, this increases the frequency with which we would have to re-enter A. To

maximise the length of our path, we assume when our algorithm runs out of R2, we must first traverse

to a vertex in A followed by a vertex in Tts (see Figure 4.23).

v′

t

FIGURE 4.23. Worst-case configuration for finding an uncongested path (negative rout-
ing). Vertices in A are shown in blue.

We also ensure that consecutive vertices on the exploration path outside of Tts ∪ A are arbitrarily close

to one another. This prevents our algorithm from progressing towards t when leaving Tts ∪ A, making

it pay the cost of entering and leaving Tts ∪ A just to get to the same point as it would have if it had

not done so. This is currently not depicted in Figure 4.23 as plotting vertices arbitrarily close to one
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another on the horizontal axis can cause edges to cluster together, which becomes visually confusing.

We introduce the following lemma to bound the distance travelled to re-enter A:

LEMMA 9. Let s and t form a canonical triangle Tts, with a vertex v′ forming region A next to Tts. If a

vertex u is a distance X away from v′, then |uw| ≤ X + |v′t| for any vertex w ∈ A.

PROOF. Let w be an arbitrary vertex in A and u be some vertex which is X away from v′. We begin

by observing that region A is always an equilateral triangle. Applying Observation 3, we can conclude

that |v′w| ≤ |v′t|. Considering △v′wu, we can use the triangle inequality to get:

|uw| ≤ |uv′|+ |v′w| ≤ X + |v′t|

This bounds the distance from any vertex outside of A to any vertex within A. □

We observe that we can bound the path length from any w ∈ A to an vertex in Tts, which is in Cw
1 ,

with |v′t|. This is because the side length of the canonical triangle created by w to any vertex in Cw
1

is bounded by |v′t|. To get to the first vertex in Tts from A, our algorithm will only take vertices in

in the C1 cone. Applying Lemma 3, we can bound the length of our path to a vertex in Tts with |v′t|.

Combining this with Lemma 9, this leads to the following claim:

LEMMA 10. Let s and t form a canonical triangle Tts, with a vertex v′ forming region A next to Tts. If

a vertex u is a distance X away from v′, then |uw| ≤ X + 2|v′t| for any vertex w ∈ Tts ∪A.

We previously assumed that our algorithm is forced to immediately exit Tts ∪A after traversing into Tts

to prevent it from making any progress towards t. Let us assume we are now at a vertex u ∈ Tts. This

means that there are no uncongested vertices in C̄u
0 . We now claim that we cannot ever leave Tts ∪ A

through some vertex in A. We operated under the assumption that we would enter Tts∪A at some vertex

v ∈ A first. Since we enter Tts through vertices in Cv
1 , v must be in C̄w

1 . For the sake of contradiction,

let us assume there exists a vertex w ∈ Cu
2 which blocks our exit. This means that v ∈ Cw

0 or v ∈ C̄w
2 .

The only way that v and w are not connected is if there exists either some vertex in Tts ∪A that is closer

to w in Cw
0 or C̄w

2 . We observe that the first case cannot occur as v being connected to u means that their

canonical triangle is empty. This means that there cannot exist a vertex in Tts that is closer to w than v

is. This is shown in Figure 4.24, where the orange region is guaranteed to be empty. The latter case will

still result in some alternative vertex w′ ∈ A being connected to v since no vertex in Tts will block it

from doing so. As described in Section 3.2.2, our algorithm will proceed to uncongested vertices in A
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before entering Tts. Hence, the presence of w allows our algorithm to make progress towards t while in

Tts ∪A, which contradicts our setup.

FIGURE 4.24. Configuration where w must be connected to v, given that w ∈ Cu
2 and

v ∈ C̄u
1 .

Thus, we can conclude the following:

LEMMA 11. If our half-plane routing algorithm enters the region defined by Tts ∪ A at some vertex in

A and reaches some vertex w ∈ Tts, there cannot be any vertices in A which are in Cw
2 .

We get the following corollary of Lemma 11:

COROLLARY 1. When our algorithm leaves Tts ∪ A at some vertex u ∈ Tts and moves to a vertex w

which is a distance of X away from v′, |uw| ≤ X + |v′t|.

PROOF. Lemma 11 asserts that there must be a direct edge from w ∈ Tts to some vertex outside of

Tts ∪A. We observe that any vertex in Cv′
1 ∩ Tts and A is within |v′t| of v′ as a result of Observation 3.

Thus, we can apply triangle inequality on △v′wu to get the bound of X + |v′t| to travel from any vertex

in Cv′
1 ∩ Tts to a vertex which is a distance of X away from v′. □

Let us assume that the shortest path stops at some vertex u, which is a distance of R∗
2 away from v′.

Vertex u is connected to w. In the worst-case, our algorithm checks in A at the vertex v right before u,

leaves A at u and continues to explore with budget R2 = 1.5|v′u| = R∗
2, overshooting the shortest path.
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To help bound the repeated entering and exiting of Tts ∪A, we prove that the following pattern holds in

our given configuration:

LEMMA 12. Starting from v′, our algorithm travels at most 3
(∑log2.5(

R2
|v′t| )

i=0 (2.5)i · |v′t|
)
+3 log2.5(

2.5R2
|v′t| )·

|v′t| when we run out of budget R2, entering and exiting Tts ∪A.

PROOF. We show this bound holds by induction. R2 is initially set to |v′t|, which is our base-case.

To run out of R2, we travel to some vertex u which is R2 = |v′t| away from v′. Applying Lemma 10 to

bound the distance of entering Tts ∪ A, we can conclude that the distance travelled to re-enter Tts ∪ A

is bounded by R2 + 2|v′t|. Since we exit Tts at some vertex w arbitrarily close to u, we use Corollary 1

to bound the distance out with R2 + |v′t|. Thus, the total distance travelled is:

R2 +R2 + 2|v′t|+R2 + |v′t| = 6|v′t| = 3 · (2.5)0 · |v′t|+ 3|v′t|

This shows that the bound holds for the base-case.

Our inductive hypothesis is as follows: the bound holds for a vertex u which is R2 away from s, for

R2 ≥ 2.5|v′t|.

We now prove that this bound holds for the next time we run out of our newly-allocated budget, R2 =

1.5|v′u|. Assuming we have left Tts ∪ A, we are now at some vertex which is arbitrarily close to u.

From here, we will travel at most a straight line distance of 1.5|v′u| away. This indicates we get to some

vertex x which is 2.5R2 away from v′. Hence, we are required to prove that the total distance travelled

after entering and exiting Tts ∪A is:

3

log2.5(
2.5R2
|v′t| )∑

i=0

(2.5)i · |v′t|

+ 3(log2.5(
2.5R2

|v′t|
) + 1)|v′t|

Using Lemma 9 in conjunction with Corollary 1, we conclude that the distance to enter and exit Tts ∪A

at x is:

1.5R2 + 2.5R2 + 2|v′t|+ 2.5R2 + |v′t| = 6.5R2 + 3|v′t|
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Combining this with our inductive hypothesis, we upper-bound the total distance travelled with:

6.5R2 + 3|v′t|+ 3

log2.5(
R2
|v′t| )∑

i=0

(2.5)i · |v′t|

+ 3 log2.5(
2.5R2

|v′t|
) · |v′t|

= 6.5 · 2.5log2.5(
R2
|v′t| ) · |v′t|+ 3|v′t|+ 3

log2.5(
R2
|v′t| )∑

i=0

(2.5)i · |v′t|

+ 3 log2.5(
2.5R2

|v′t|
) · |v′t|

< 7.5 · 2.5log2.5(
R2
|v′t| ) · |v′t|+ 3|v′t|+ 3

log2.5(
R2
|v′t| )∑

i=0

(2.5)i · |v′t|

+ 3 log2.5(
2.5R2

|v′t|
) · |v′t|

= 3 · 2.5log2.5(
R2
|v′t| )+1 · |v′t|+ 3

log2.5(
R2
|v′t| )∑

i=0

(2.5)i · |v′t|

+ 3(log2.5(
2.5R2

|v′t|
) + 1) · |v′t|

= 3

log2.5(
R2
|v′t| )+1∑

i=0

(2.5)i · |v′t|

+ 3(log2.5(
2.5R2

|v′t|
) + 1) · |v′t|

= 3

log2.5(
2.5R2
|v′t| )∑

i=0

(2.5)i · |v′t|

+ 3(log2.5(
2.5R2

|v′t|
) + 1) · |v′t|

This concludes our proof by induction. □

Using Lemma 12, we can bound the length of our path in the following form:

3


log2.5(

R∗
2

|v′t| )∑
i=0

(2.5)i · |v′t|

+ 3 log2.5(
2.5R∗

2

|v′t|
) · |v′t|+ 4R∗

2 + |v′t| (4.12)

The final two terms in Equation 4.12 correspond to traversing out an extra 1.5R∗
2 before re-entering A at

a vertex which is 2.5R∗
2 away. We observe that we can bound |v′t| with R∗

2. To bound 3 log2.5(
2.5R∗

2
|v′t| ),

we can solve for the smallest constant a such that a · R∗
2 ≥ 3 log2.5(

2.5R∗
2

|v′t| ) · |v
′t|. We first substitute

y =
R∗

2
|v′t| :

a · y · |v′t| ≥ 3 log2.5(2.5y) · |v′t| (4.13)

a ≥ 3 log2.5(2.5y)

y
(4.14)
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Setting f(y) = 3 log2.5(2.5y)
y , we can compute f ′(y) to find the function maximum, which occurs at

y = e
2.5 . Hence, we have a maximum at f( e

2.5) ≈ 3.1. This means that setting a = 3.1 is a sufficient

upper-bound. We also make use of the following observation:

OBSERVATION 4.
logx(n)∑
i=0

xi =
xn− 1

n− 1

We can now rewrite Equation 4.12 purely in terms of R∗
2:

3


log2.5(

R∗
2

|v′t| )∑
i=0

(2.5)i · |v′t|

+ 3.1R∗
2 + 5R∗

2 ≤ 13.1R∗
2 (4.15)

Using Lemma 9, we can bound the length of the shortest path with 2R∗+ |v′t| ≤ 3R∗. We note that this

is under the assumption of s being placed arbitrarily close to v′. However, we note that our algorithm’s

path and the shortest path only diverges at some vertex after v′. As a result, the length of both paths will

be uniformly increased by |sv′|, which would only improve the approximation ratio. Therefore, we get

an approximation ratio of 13.1
3 ≈ 4.4 when routing negatively.

To justify that this is the worst-case when we find an uncongested path, we also examine the approxima-

tion ratio when A does not exist and show that it results in a lower approximation ratio.

Recall that the approximation ratio of a found uncongested path for positive routing was 2 (see Section

4.3.1), produced by considering the case when staying close to the canonical triangle of s and t is sub-

optimal. We can construct a similar equilateral triangle to obtain the same approximation ratio. In other

words, we consider the case where our algorithm stays close to the boundary of Tts in C̄t
1 until it reaches

arbitrarily close to t (see Figure 4.25). For A to be non-existent for the majority of our exploration path,

our algorithm should be able to traverse to vertices outside of Tts in either the C1 or C̄0 cone at every

step. To maximise our path length, we construct a similar chain of equilateral triangles as presented in

Section 4.3.1. We assume we traverse to some vertex u that is arbitrarily close to t. However, our path is

blocked by some congested vertex at u and thus, our algorithm has to travel to v ∈ Ct
2. We also assume

that there exists a direct edge from t to v to minimise σ.
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s

t v

u

FIGURE 4.25. Orange shows the shortest path and blue shows the suboptimal path our
algorithm takes before converging back into the shortest path (negative routing). Edges
which are not on either our algorithm’s path nor on the shortest path are omitted.

As u becomes arbitrarily close to t, the approximation ratio is expressed as:

2|su|+ 2|uv|
|sv|+ |uv|

(4.16)

We can apply the same argument made in Section 4.3.1 to show why placing u close to t produces the

worst approximation ratio. However, we previously had the constraint that the angle between u and v

had to be at least π
3 because we had to ensure that v ∈ Ct

2. This now no longer applies as we can have

v ∈ C̄s
0 . Fixing ∠suv = π

3 , we apply the sine rule to get the following:

|sv| =
sin(π3 )

sin(2π3 − ∠usv)
· |su|

|uv| = sin(∠usv)

sin(2π3 − ∠usv)
· |su|

We can express the approximation ratio as:

2|su|+ 2|uv|
|sv|+ |uv|

=
|su|(2 + 2 · sin(∠usv)

sin( 2π
3
−∠usv)

)

|su|( sin(π
3
)

sin( 2π
3
−∠usv)

+ sin(∠usv)
sin( 2π

3
−∠usv)

)

=
2 sin(2π3 − ∠usv) + 2 sin(∠usv)

sin(π3 ) + sin(∠usv)

Plotting this function in Desmos, we get a maximum at approximately 2.20 when ∠usv = 0.43 radians.

This shows that setting ∠usv = 0.43 radians will lead to the worst-case approximation ratio under this

configuration. As a result, we achieve the following result:
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LEMMA 13. If A does not exist, our algorithm produces a 2.2-approximation of the optimal uncongested

path.

However, this is still lower than the 13.1
3 -approximation found prior.

We proceed by arguing that the 13.1
3 -approximation is a lower-bound for any deterministic k-local rout-

ing algorithm. In our current configuration, it is impossible to locally determine how much distance to

travel before checking in Tts∪A. With no geometric properties to exploit, any local routing algorithm is

required to set some routine interval for checking in Tts∪A to avoid completely missing an uncongested

path. We will refer to this interval as the "check-in interval".

We had previously observed that a linear search can be arbitrarily bad. Consider Figure 4.26, in which

the shortest path enters Tts ∪ A at vertex u. In both Figure 4.26(a) and Figure 4.26(b), both exploration

paths outside of Tts ∪ A up to u in Figure 4.26(a) look identical. In Figure 4.26(a), the shortest path

enters the Tts∪A at the very end of the exploration path while in Figure 4.26(b), it enters Tts∪A at some

unknown distance beforehand. We note that the interval length between seeing consecutive congested

vertices in Tts ∪ A from our exploration path is not necessarily even, giving no useful information for

when an algorithm should go in Tts ∪ A to verify that there does not exist an uncongested path. As a

result, we are always able to construct a graph such that any fixed check-in interval is sub-optimal. For

example, if we set the check-in interval to be |v′u| in Figure 4.26(a), we could be in an instance of Figure

4.26(b), which causes us to overshoot the path. Similarly, setting our check-in interval to be too small

can result in a frequent exiting and entering of Tts∪A if we are in an instance of Figure 4.26(a), wasting

our exploration budget. By placing Ω(k) vertices arbitrarily close to the vertices in A, we can obscure

any k-local routing algorithm from gaining any information on if entering Tts ∪ A at that particular

vertex is advantageous or not.
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t

u

(a)

v′

t

u
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FIGURE 4.26. Instances where a local routing algorithm would not be able to distin-
guish between when starting from v′.

Since the check-in interval is impossible to optimise without knowledge of the shortest path, as shown

in Figure 4.26, the only aspect a routing algorithm can optimise is its strategy for determining when to

recheck Tts ∪A if the previous check was unsuccessful in finding a path.

To formally argue that our routing algorithm is a lower-bound for any local routing algorithm, we observe

that different routing algorithms can use different strategies for determining the distance from v′ of their

next check-in. This is either done through some uniform increment or an exponential increment of

the distance previously travelled. Any algorithm which interpolates their search with a mix of the two

strategies can be expressed as some exponential increment as we can assume that all check-ins from the

uniform increment were unsuccessful.
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We generalise the pattern found in Lemma 12 to both uniform and exponential increments. If a routing

algorithm checks in Tts ∪A once every distance of Y , we can lower-bound the length of its path with:

3

 R∗
Y∑
i=1

Y · i

+ 3(
R∗

Y
+ 1) · |v′t| = 3R∗(R∗ + Y )

2Y
+ 3(

R∗

Y
+ 1) = Ω(R∗2)

This shows that checking in Tts ∪A at uniform increments results in a path length which is quadratic in

terms of the shortest path. Thus, we can conclude that any routing algorithm using this strategy would

have a poorer performance.

We note that our algorithm’s method is an exponential search, scaling the check-in interval by 2.5 each

time. We now generalise the bound in Lemma 12 to other variants of the exponential search. Let this

algorithm begin with a check-in interval of δ, which will then increase to travelling out Y δ from v′ for

increasing powers of Y . We get the following expression for the bound on its path length:

3

logY (
R∗

2
δ

)∑
i=0

Y i · δ

+ 3 logY (
YR∗

2

δ
) · |v′t|+ (2Y − 1)R∗

2 + |v′t| (4.17)

=
3YR∗

2 − 1

Y − 1
+ 3 logY (

YR∗
2

δ
) · |v′t|+ (2Y − 1)R∗

2 + |v′t| (4.18)

≤ 3YR∗
2

Y − 1
+ 3 logY (

YR∗
2

δ
) · |v′t|+ 2YR∗

2 (4.19)

We observe that as Y grows, there is a trade-off between the first and last terms in Equation 4.19.

The first term 3YR∗
2

Y−1 decreases as Y increases while the final term 2YR∗
2 increases. We observe that

the logarithmic term 3 logY (
YR∗

2
δ ) is a decreasing function as Y increases and δ increases. However, as

previously established, optimising δ is infeasible due to its dependence on an unknown R∗
2, Furthermore,

it is always possible to construct a graph where R∗
2 is adversarial to the δ we have set. This leaves Y as

the only variable left to optimise. We compute the intersection of 3YR∗
2

Y−1 and 2YR∗
2 to find the maximum

Y we can set without one of the terms dominating and inflating the result. We find that the intersection

of 3YR∗
2

Y−1 and 2YR∗
2 occurs at Y = 2.5, which is the value used by our algorithm. Therefore, while no

routing algorithm can have an optimal choice of δ across all graphs, we show that our algorithm’s choice

of Y is optimal. This concludes our proof that no local routing algorithm can do better on all graphs.



CHAPTER 5

Routing around convex polygons

Having now designed and analysed an algorithm for routing around a congested half-plane, the next

natural progression is to ask: "can we do the same for congested regions contained within a polygon?"

To begin approaching this question, we start with looking at convex polygons.

5.1 The Ω(c)-approximation barrier

We open this chapter with an unfortunate result:

THEOREM 3. There is no local routing algorithm that can do better than a Ω(c)-approximation in the

presence of a congested region in the shape of a convex polygon, where c is the congestion factor.

PROOF. Without loss of generality, let us assume that t ∈ C̄s
0 . We observe that the shortest path

is either a completely uncongested path around the polygon or cuts through the polygon at some point.

The former case has only two options: the shortest path is either clockwise or anticlockwise around the

polygon. On the other hand, the latter case can have O(n) options as we could enter the polygon at any

vertex. The challenge of determining where to enter the polygon from is further compounded by the

constraints of using only local information. We observe that in order to tell what portion of a particular

path is congested, we need information about the vertices on the other side of the polygon. Any edges

connected to a congested vertex will be subject to the congestion factor so a path could either be partially

congested or fully congested, depending on the existence of any uncongested vertices on the other side.

For example, Figure 5.1(a) depicts a partially congested path due to the presence of an uncongested

vertex on the other side of the polygon. On the other hand, Figure 5.1(b) depicts a fully congested path

due to there being no uncongested vertices on the other side.

72
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(a) (b)

FIGURE 5.1. Examples of two paths, one partially congested and one fully congested.

We define the width of the polygon as the length of the polygon that separates s and t. While the width

may provide more insight about what portion of the path is congested, polygons with a width that is

significantly smaller than |st| yield little to no information. For the purposes of our argument, we model

the congested region in the shape of a thin rectangle. Let us assume that there doesn’t exist a path

around the polygon and the shortest path is through the congested region at u. Let the shortest path be

partially uncongested, such that it leaves the congested region at a vertex v which is along the edge of

the polygon. Let v be connected to w, a vertex which is outside of the congested region. From w, let

there exist a direct edge from w to t. We construct the graph such that every other vertex along our

exploration path is connected to some congested vertex which is at most |uv| away from it (see Figure

5.2). We now express the length of the path from s to t via u as:

|su|+ c(|uv|+ |vw|) + |wt| (5.1)

FIGURE 5.2. Graph construction where it is difficult to locally distinguish the shortest
path at u.



5.2 AVOIDING THE CONGESTED REGION 74

By placing u arbitrarily close to s, |su| approaches 0. We can minimise the portion of the congested

path by also placing u, v and w arbitrarily close to one another, which results in |wt| approaching |st|.

This allows us to bound Equation 5.1 with |st|+ c(|uv|+ |vw|). Since we can place u, v and w close to

one another, the ratio of |uv|+|vw|
|st| can be reduced to some value less than or equal to 1

c . As a result, if we

do not attempt to find the shortest path and directly route through the congested region in the canonical

triangle of s and t, we get the following approximation ratio:

5√
3
c|st|

|st|+ c(|uv|+ |vw|)
=

5√
3
c

1 + c( |uv|+|vw|
|st| )

= Ω(c)

This indicates that if we take the congested path in Tts, the Ω(c) bound on the approximation ratio

holds. Therefore, any algorithm with a better approximation ratio must attempt to find the shortest path.

However, when using only local information, all vertices along the search path appear equally viable to

be the shortest path. Given that we cannot determine locally which vertex to use to enter the congested

region, the only way we can gain information is to go into the congested region until we either find

the shortest path or conclude that no partially uncongested path exists. This bounds the length of our

exploration before we find the shortest path by 2cn|uv|. Assuming |uv|+|vw|
|st| ≤ 1

c , we can rearrange to

get |uv|+ |vw| ≤ |st|
c . Substituting that into our approximation ratio, we obtain:

2cn|uv|
|st|+ c(|uv|+ |vw|)

≥ 2cn|uv|
2|st|

= n · c|uv|
|st|

The approximation ratio of Ω(c) holds for n ≥ |st|
|uv| , suggesting that even the effort of checking for

the shortest path inherently yields an Ω(c)-approximation. Since both checking and not checking for

a partially uncongested path will result in an Ω(c)-approximation, we conclude that no local routing

algorithm can achieve a better approximation ratio than this lower bound. □

5.2 Avoiding the congested region

A corollary of Theorem 3 is that ignoring the congestion while routing can yield a reasonably effective

solution. Specifically, Bose et al.’s algorithm can be applied directly to any half-Θ6-graph with conges-

tion as it also results in a O(c)-approximation. Regardless, the problem of verifying and finding a path

which completely avoids the congested region still stands. The reader may raise the question: can an

uncongested path be located if the exploration path is limited by a certain budget?
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To answer this, we introduce two variants of a deterministic routing algorithm for routing around con-

gested regions defined by a convex polygon. This algorithm takes a parameter E as input, which limits

the distance our algorithm can travel to find an uncongested path. Since routing in uncongested regions

has already been covered by Bose et al., we consider this budget E as a limit on the distance outside of

following Bose et al.’s algorithm.

We begin by making a crucial observation: routing without any knowledge of the shape of the polygon

can result in arbitrarily bad exploration paths. When the shape of the polygon is unknown, our algorithm

must stay close to the sides of the polygon when attempting to route around. A configuration of points

such as the one depicted in Figure 5.3 results in a very poor exploration path as the algorithm must

repeatedly approach the red side of the congested region to determine if this particular side has ended.

FIGURE 5.3. Example of a bad configuration of points along one side of the polygon.

As a result, we assume we have knowledge of the convex hull of the polygon. We note that our algorithm

is not required to store the convex hull in memory as it only uses it at the beginning of the search phase

to advise whether to begin searching clockwise or anticlockwise and to compute and store a constant

number of extreme points. Analogous to the half-plane routing algorithm described in Chapter 3, both

algorithm variants consist of 3 phases: routing, search and return. We will refer to the two variants as

A and B. While variants A and B are similar, A will search once on either side of the polygon whilst

B will use a technique called the linear spiral search (Baeza-Yates et al., 1993) over both sides of the

polygon. We use variant A under the condition that E ≤ 13.1
2 P , where P is the perimeter of the polygon.

We will first present the details of variant A and then outline the differences between it and variant B in

Section 5.5.

The routing phase involves the straightforward application of Bose et al.’s algorithm without any mod-

ifications. Once it encounters a congested vertex which it would normally traverse to, the algorithm

switches to the search phase (described in Section 5.3). Therefore, a separate section for the routing

phase will be omitted for brevity.
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5.3 Search phase

Let s be the vertex we start from and u be the congested vertex that the optimal routing algorithm would

select. We first identify the topmost, bottommost, leftmost and rightmost vertices of the convex hull,

denoting these vertices as vT , vB, vL and vR respectively. Note that vertices are not necessarily distinct.

In addition, polygons with horizontal or vertical edges may have both endpoints of that edge qualifying

for, say, the topmost vertex. As a result, a maximum of two copies for each of the four extreme points

will be maintained i.e. vT = u, v′T = v, for (u, v) being the topmost horizontal edge in the polygon.

We define an exploration budget M = E/3. Unlike routing along a half-plane, where it is immediately

evident that the uncongested path lies on the opposite side of the half-plane, we lack sufficient infor-

mation to determine if we should start searching clockwise or anticlockwise around the polygon. As a

result, our algorithm will search both sides with a budget of M each.

First, we project s and t onto the polygon to get the points s′ and t′ on the convex hull (see Figure

5.4). Then, we calculate the perimeter of the polygon from s′ to t′ in two directions: clockwise and

anticlockwise. We begin searching in the direction which yields the smaller perimeter. For example, in

Figure 5.4, we would begin searching anticlockwise from s.

FIGURE 5.4. Projection of s and t onto the convex polygon to obtain s′ and t′

We order vT , vB, vL and vR by occurrence from s′ when walking around the polygon in the direction

we are currently searching in. Only distinct vertices are kept in this ordering i.e. if vB = vL, only one

of them will be retained. If we encounter t′, we end the sequence as it indicates that there are no other
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extreme points separating us from t. Without loss of generality, let us assume we are searching in an

anticlockwise direction when routing positively and a clockwise direction when routing negatively. We

use each of these extreme points as auxiliary targets to get around the polygon, processing each one

in the computed ordering. As a result, the routing algorithm may switch between routing positively or

negatively as our location with respect to t may change as we route around the polygon. Once we have

successfully routed around every extreme point in the given order, we can enter the routing phase to t.

At each extreme point, there are three target cones our algorithm aims to reach. This is determined by

the location of the subsequent extreme point in the computed sequence. For the final extreme point,

we consider the location of t. Let X denote the cone that contains the next point. The objective is to

reach one of the "target cones": X or either of the two cones following X in the opposite direction of

the current search i.e. clockwise when searching in an anticlockwise direction. As an example, let us

assume we are currently routing anticlockwise around vR and the next extreme point is vT which is in

C̄vR
2 . Thus, the target cones we want to reach when we attempt to route around vR are C̄vR

2 , CvR
0 or C̄vR

1 .

This is visualised in Figure 5.5, in which the red region represents the congested polygon. Assuming we

are routing anticlockwise around the polygon, the target cones for each extreme point are coloured and

labelled. The target cones for vT and vB are coloured in blue and are labelled as v∗T and v∗B respectively.

Similarly, the target cones for vL and vR are coloured in orange and labelled as v∗L and v∗R respectively.

For a vertex in v∗B , which is CvB
0 ∪ C̄vB

1 ∪ CvB
2 , the first objective is to route to v∗R, which is C̄vR

2 ∪

CvR
0 ∪ C̄vR

1 . Once in v∗R, the next goal is to get into v∗T , and so on. This summarises how our algorithm

traverses around the polygon.
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FIGURE 5.5. Target cones around a polygon when moving in an anticlockwise direc-
tion.

Using these extreme points to route ensures that at least one of the cones immediately adjacent to the

canonical triangle of our current vertex and the extreme point is free from congestion. This approach

leverages the convex properties of the polygon and allows us to focus on routing in the cone next to the

canonical triangle.

There exists an edge case for if the next extreme point lies in the same cone as the vertex we are currently

at. We will continue using the example of routing anticlockwise around vR, with the next extreme point

being vL. Evidently, X should not be a target cone as our algorithm will simply terminate. Instead, we

observe that getting to a vertex u in the cone of vR directly opposite X is sufficient to ensure that one of

the cones immediately adjacent to the cone defining the canonical triangle of u and vL is not covered by

the congested polygon. This is because we observe that the canonical triangle of u and vL is simply an

enlarged version of the canonical triangle of vR and vL (see Figure 5.6).
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(a) Vertex vL is in a negative cone of vR (b) Vertex vL is in a positive cone of
vR

FIGURE 5.6. Blue represents the canonical triangle of vR and vL and purple represents
the canonical triangle of a point u and vL, where u is in the opposite cone of vL.

As an example, consider Figure 5.7. Assume we are starting at s and we are now routing anticlockwise

around the congested polygon, depicted in red, to get to t. We are first required to route around vR,

followed by vL. However, we observe that vL lies in the same cone of vR as s. As a result, getting to a

vertex u ∈ CvR
0 is sufficient in ensuring that the cone next to TvLu, C̄vL

2 , is free from congestion.

vR

vL

u

s

tt

v′R

FIGURE 5.7. Example of the edge case, when the next extreme point lies in the same
cone as the one we are currently in.
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The convexity of the polygon ensures that at least one cone next to the canonical triangle of any two

adjacent extreme points will be free from congestion. This is depicted in Figure 5.8, in which we

observe that the edges of the congested region are contained within these canonical triangles. Since

u creates a canonical triangle with vL which contains the canonical triangle of vR and vL (see Figure

5.6), we can conclude that the cone next to the canonical triangle of u and vL must be congestion-free.

Thus, for this edge case, we redefine the target cones to be the three cones adjacent to X in the opposite

direction of our search.

vT

vB

vL
vR

Tv′
B
vR

TvRvT
TvLvT

v′T

v′B

TvBvL

TvBv′
B

TvT v′
T

FIGURE 5.8. Polygon with canonical triangles defined by adjacent extreme points.

5.3.1 Notation

We maintain the following variables for each extreme point, with all variables initialised as ∅ (unless

otherwise mentioned):

• γ: the vertex which we start attempting to route around the extreme point from.

• δ: the last vertex we traverse to before leaving the canonical triangle.

• δ′: the vertex we use to re-enter the canonical triangle after leaving it.

• f+: the last vertex in a positive cone of the extreme point before we move into a different cone.

• f−: the last vertex in a negative cone of the extreme point before we move into a different

cone.
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• f̂+, f̃+: the first and last vertices respectively that we traverse to in a positive non-target cone.

These variables will only be used when we route negatively.

• v′: the vertex we use to construct region A, which was previously introduced and defined in

Chapter 3. This variable will only be used when we route negatively and is initialised as ∅ in

that case.

• BACKWARDS: a Boolean to denote if we are in the process of searching backwards. This

variable will only be used when we route positively and is initialised as False in that case.

• B: a secondary budget which limits how far we are allowed to traverse outside of the canonical

triangle.

Before we traverse to any vertex, we check if the length of the edge to it is within M and only proceed

if that is the case. Once we proceed, we subtract the edge length from M. If there are no vertices within

M, we enter the return phase.

We note that we only use the return phase once to get back to s and search the other side of the polygon.

To keep track of if we are searching the second side, we maintain an additional variable, SECOND, a

Boolean that is initialised as False. In addition, we define B to be the Euclidean distance from γ to the

current extreme point we are processing i.e. BT = |γT vT |

In the following sections, the aforementioned variables will have a subscript to differentiate which ex-

treme point it is associated with i.e. γT represents the vertex which we start from when routing around

vT . The majority of these variables are used to facilitate the return phase as it is imperative to follow the

same path back to prevent consuming more budget than what was required to get there.

Alongside this, we sometimes describe selecting vertices from a vertex u "in the direction of v", where

v is some other vertex. More formally, this refers to vertices in the cone that contains v and its two

neighbouring cones.

5.3.2 Positive routing

Let the current extreme point that we want to route around be vR and vR ∈ Cu
0 , where u is the vertex we

are currently at. Since we are searching anticlockwise around the polygon, we want to reach CvR
2 . When

routing positively, we maintain an additional variable, BACKWARDS, initialised as False. This variable

will indicate if we are searching in the opposite direction to vR as the closest vertex in CvR
2 could be

further away than what we expected. We now define four cases:
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(1) Inner triangle search

(2) Outer triangle search

(3) Backwards search

(4) Wrap around

We begin in Case 1 and save γR = u.

5.3.2.1 Case 1: Inner triangle search

This case is for when we are searching for the next extreme point while in TuvR . We consider vertices in

the direction of vR. If we are connected to at least one vertex in TsvR , let the first vertex anticlockwise

from the right boundary of TγRvR be v. In cases where we are also connected to a vertex w which is

outside of TγRvR , select the vertex which forms the smallest unsigned angle against the right boundary

of Cu
0 (see Figure 5.9).

FIGURE 5.9. Comparing α and β to determine whether to traverse to v or w.

The one exception is if we are connected to any vertices in CvR
2 which are also in TγRvR . Since we want

to stay close to vR, we choose the vertex in TγRvR instead.



5.3 SEARCH PHASE 83

FIGURE 5.10. Example of the exception to selecting vertices with the smallest angle.
TγRvR and non-important edges are shown in gray.

We remain in this case if we are still in TγRvR and repeat the steps above to select the next vertex.

Otherwise, should we prepare to traverse to a vertex that is outside TγRvR , we store our current vertex

as δR before continuing and entering Case 2.

If we reach CvR
2 , we move on to processing the next extreme point if CvR

2 is a target cone of vR and

enter Case 4 otherwise.

In the event that there are no uncongested vertices in the direction of vR, we enter Case 3.

5.3.2.2 Case 2: Outer triangle search

The algorithm enters this case if we are currently outside of TγRvR and have not yet arrived at CvR
2 (see

Figure 5.11).
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FIGURE 5.11. Blue region shows our current area of exploration. Vertex γR is con-
nected to a congested vertex.

Considering vertices in Cu
0 or C̄u

1 , we select the first vertex which is clockwise from the right boundary

of TγRvR . As we are staying close to the boundary of TγRvR , we are able to gain information about the

path in TγRvR . If the highest vertex we can see is within the congested region, we do not subtract from

B as we traverse. The basis for this is that seeing a congested vertex implies any path in TsvR would

have to leave TsvR to avoid the congested region and thus, staying outside of TsvR is the correct course

of action and should not be penalised. Otherwise, if the highest visible vertex is uncongested, it suggests

there could be a shorter uncongested path in TsvR and we should subtract from B to avoid overshooting

it. Consider Figure 5.12 as an example. At vertex u, we are in Case 2. Assuming |uw| > B, we will

be stopped from proceeding directly to w, which could be arbitrarily far away from u. This prevents us

from taking any vertex we see in CvR
2 as it could be unreasonably far away, and we have yet to confirm

that an uncongested path does not exist in TγRvR .
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FIGURE 5.12. Example of budget B preventing our algorithm from traversing to a
vertex in CvR

2 that could be arbitrarily far away.

If there are no vertices in C̄u
1 which have an edge length to it within B but we are connected to an

uncongested vertex in TsvR in Cu
0 , proceed to that vertex and set it to be δ′R. Continue selecting vertices

in either Cu
0 or C̄u

1 that are closest to the right boundary of TγRvR until we reach a vertex in CvR
2 . We

note that δ′R could be in CvR
2 and hence, we also perform the steps in the following paragraph.

Before proceeding to any vertex in CvR
2 , we save the current vertex as f−

vR
. Once in CvR

2 , we check if it

is one of the three target cones of vR. If this is the case, we can move on to processing the next point.

Otherwise, we enter Case 4.

If there are no uncongested vertices to further explore and we have not reached CvR
2 , we enter Case 3.

5.3.2.3 Case 3: Reverse search

This case signifies that there are no vertices left to explore when moving in the direction of vR. At this

stage, BACKWARDS is set to True and we now repeatedly select vertices in Cu
2 . This is done until we

are connected to a vertex which is in CvR
2 . The current vertex is then marked as f−

vR
and we either move

on to the next extreme point (if CvR
2 is a target cone) or enter Case 4. If there are no vertices in Cu

2 ,

we enter the return phase (described in Section 5.4). An example of the reverse search is illustrated in

Figure 5.13.
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FIGURE 5.13. Example of reverse search. The blue dashed line represents our normal
exploration path while the purple dashed line represents our reverse search.

5.3.2.4 Case 4: Wrap around

This case is for when we have reached CvR
2 but it is not a target cone. To traverse, we repeatedly select

the first vertex which is anticlockwise from the right boundary of C̄vR
0 in the direction of vR until we are

connected to vR. Once we are connected to vR, check if there are vertices in Cu
0 or C̄u

2 that are in CvR
0 .

If there are, set f+ = u.

If we are connected to vertices in both CvR
0 and C̄vR

1 , we select the one in CvR
0 as that makes the most

progress around the polygon. We can process the subsequent extreme point because CvR
0 is guaranteed

to be one of the target cones.

If C̄vR
1 is one of our target cones, we can move onto processing the next point. Otherwise, assuming our

current vertex is u, we repeatedly select the first vertex clockwise from the right boundary of CvR
0 in

either C̄u
2 or Cu

0 . This is done until we see the first vertex in CvR
0 . We can now move to processing the

next extreme point.

If there are no vertices in either CvR
0 or C̄vR

1 when we are at the closest vertex to vR in CvR
2 , then we

conclude that there is no uncongested path around vR. Thus, we enter the return phase (described in

Section 5.4).
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5.3.3 Negative routing

Let the current extreme point that we want to route around be vR and vR ∈ C̄u
0 , where u is our current

vertex. We observe that when routing around a convex polygon, we can encounter the same issues as

we did when we were routing around a congested half-plane. In particular, there still remains the issue

of arbitrarily bad exploration paths when staying close to the canonical triangle we are currently routing

next to (see Figure 3.12). We previously circumvented this problem by constructing a region A and

routing outside of Tts ∪ A. In the context of the convex polygon, this would be TvRγR ∪ A, where A is

constructed in the same manner and the secondary budget B is equivalent in purpose to R2 in Section

3.2.2. We define three states for when we route negatively:

(1) Inner triangle search

(2) Outer triangle search

(3) Wrap around

We set γR = u and begin in Case 1.

5.3.3.1 Case 1: Inner triangle search

We consider vertices in the direction of vR. The main distinction between negative and positive routing

is that there is a possibility that we can directly enter CvR
2 in TvRγR (see Figure 5.14).

FIGURE 5.14. Being able to directly access CvR
2 in TvRγR .
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We begin searching in the direction of vR. Instead of selecting the vertex that forms the smallest angle

against the right boundary of the canonical triangle, we select uncongested vertices in TvRγR which are

closest to the right boundary of TvRγR and only leave TvRγR if there are no uncongested vertices left. If

eventually we are connected to vR in TvRγR and can see at least one vertex in CvR
2 , we save our current

vertex as f+
vR

before selecting the vertex that is closest to vR in CvR
2 . If CvR

2 is a target cone, we move

on to processing the next extreme point. Conversely, we enter Case 3.

If we have to leave TvRγR at some vertex w, we save δR = w and enter Case 2.

5.3.3.2 Case 2: Outer triangle search

Considering vertices in the direction of vR, we select the first vertices closest to the boundary of TvRγR ∪

A. We also subtract from B following the same criteria outlined in Section 5.3.2.2, with the addition

of considering vertices in A as well. If we manage to reach CvR
2 , we save f−

vR
= u and move on to

processing the next extreme point if CvR
2 is a target cone and Case 3 otherwise.

In the case where we run out of budget B, we have to re-enter TvRγR ∪A. However, what could occur is

a repeated exiting and entering of TvRγR ∪ A, which wastes the overall exploration budget. In Chapter

3, we depicted this configuration of alternating congested and uncongested vertices with region A (see

Figure 4.23). To offer a different perspective, we depict a configuration where A does not contain any

vertices, as shown in Figure 5.15. This is to emphasise that we could directly enter TvRs without having

to go through some vertex in A. As we follow our exploration path, shown in blue, it is clear that going

into TvRγR at every uncongested point constitutes a highly inefficient use of our exploration budget.
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FIGURE 5.15. Extreme case of seeing uncongested vertices in TvRs which yield no
uncongested path.

If we run out of budget B, we re-enter TvRγR∪A at the lowest uncongested vertex w we are connected to

in either Cu
1 or C̄u

0 , setting δ′R = w. We proceed by following the same steps outlined in Section 3.2.2.

To avoid redundancy, we refer readers back to Section 3.2.2 for details. While the approach for selecting

vertices on our exploration path remain consistent, we now highlight some differences, primarily related

to bookkeeping:

• If we eventually find ourselves connected to at least one vertex in CvR
2 , save our current vertex

as f+
vR

if we are in TvRγR and as f−
vR

if we are in A. Then, we traverse to the vertex that is

closest to vR in CvR
2 . Then, we either enter Case 3 if CvR

2 is not a target cone or otherwise,

move on to processing the next extreme point.

• If we are forced to leave TvRγR ∪ A due to a lack of uncongested vertices to follow, we reset

δ′R = ∅ as we wrongly re-entered TvRγR∪A and traversing back into TvRγR∪A is not necessary

for the return phase.

Reallocating budget to B follows the same procedure as for R2 in Section 3.2.2 as we update B =

min(1.5|tv′|,M).

In the case where there are no vertices to traverse to outside of TvRγR ∪ A but there exist uncongested

vertices in TvRγR ∪ A which are below our current vertex, we also enter TvRγR ∪ A at the lowest

uncongested vertex w and set δ′R = w. We then repeat the steps outlined above.
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5.3.3.3 Case 3: Wrap around

We are in this case if we have not yet reached one of the target ones but are in a different positive cone of

vR. We now want to find the first vertex in C̄vR
0 or CvR

1 since both cones are guaranteed to be valid target

cones. Using the canonical triangle of vR and f̂+
vR

, we repeatedly select the first vertex anticlockwise

from the right boundary of C̄vR
0 in the direction of vR. At each vertex u we traverse to, we check Cu

1

and C̄u
2 for any vertices in C̄vR

0 or CvR
1 . If we see a vertex that meets that criteria, we save our current

vertex as f̃+
vR

before traversing to it; we can now move on to processing the next extreme point. If given

the choice between traversing to a vertex in C̄vR
0 or CvR

1 , we select the vertex in CvR
1 as that makes the

most progress around the polygon.

If we are still in CvR
2 and are connected to vR without finding any valid vertices to traverse to, we can

conclude that no uncongested path exists and enter the return phase (described in Section 5.4). This is

because all vertices in CvR
1 must be in either Cu

1 or C̄u
2 at this current point; being unable to see any

vertices indicates that there does not exist any vertices in CvR
1 . Figure 5.16 shows this, in which the

yellow region is guaranteed to be empty if u is not connected to any vertex in it.

vR

f̂+
vR

u

FIGURE 5.16. The canonical triangle of vR and f̂+
vR

is depicted in blue and our al-
gorithm’s exploration path is represented by the dotted black line. The yellow region
depicts the region Cu

1 ∪ C̄u
2 which is below the horizontal line going through vR.
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5.4 Return phase

We enter this phase if we want to return back to s due to exhausting the exploration budget or if there are

no viable vertices to further explore. We begin by checking the status of SECOND. If SECOND is True,

we may conclude our search since we have already explored the other side of the polygon. We now

return False to signify that we were unsuccessful in finding an uncongested path around the polygon

within the given budget. Otherwise, if SECOND is False, we need to return to s to continue searching

the other side.

To do so, we first consider the extreme points in reverse order of how we were originally considering

them i.e. if we were originally searching for vT , vR, vB , we now consider vB, vR, vT . We will refer to

this ordering as O. Then, we check what vertex we were in the process of routing towards and what

direction around the polygon we were searching in before entering the return phase.

Without loss of generality, let us assume we are currently at a vertex u and we were in the process of

routing towards vR. There are three cases which we could currently be in:

(1) We are in the canonical triangle of γR and vR.

(2) We are outside of the canonical triangle of γR and vR but in a negative cone of vR.

(3) We are outside of the canonical triangle of γR and vR but in a positive cone of vR.

Once we reach s, we reset all variables mentioned in Section 5.3 to ∅ so that they can be reused for

routing on the second side. Let u be the vertex that we are currently at.

5.4.1 Positive routing

Without loss of generality, let us assume γR ∈ C̄vR
0 and that we were searching around the polygon in

an anticlockwise direction prior to entering the return phase.

5.4.1.1 Case 1

In the search phase, we traversed through TγRvR by staying close to its right boundary if we are routing

in an anticlockwise direction. As a result, we can retrace our steps by consistently following vertices in

the canonical triangle that are closest to the right boundary of TγRvR in the direction of γR. However,
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we need to distinguish between the case where we have never left TγRvR and the case where we have

re-entered TγRvR . The variable δ is used to make this distinction.

CASE 1.1: δR = ∅

CASE 1.2: δR ̸= ∅

Case 1.1: This case implies that we have never left the canonical triangle of γR and vR. Thus, we can

continue traversing in the direction of γR and staying close to the right boundary of TγRvR to get back

to γR. Once we are at γR, we stop if γR = s. Otherwise, we consider the next extreme point in O.

Case 1.2: This case implies that we have re-entered TγRvR and that a section of our exploration path is

outside of the canonical triangle. Thus, we follow vertices in the canonical triangle that are close to the

right boundary until we reach δR or δ′R. Once we are at δR or δ′R, select the closest vertex to the right

boundary of TγRvR which is outside of TγRvR and in either C̄u
0 or Cu

2 . We now enter Case 2.

5.4.1.2 Case 2

If we are in a negative cone of vR but we are not in TγRvR , there are two cases:

CASE 2.1: We are in the same cone as γR

CASE 2.2: We are not in the same cone as γR

Case 2.1: This means we must be in C̄vR
0 . We follow vertices in Cu

1 or C̄u
0 , choosing vertices that stay

close to the right boundary of TγRvR until we see either γR or δR. If we see δR, we traverse to it and

enter Case 1.

We note that the variable BACKWARDS will only influence choices made in C̄vR
0 , and will thus only

affect this specific subcase. BACKWARDS being True indicates that the closest vertex to vR in CvR
2 is

below γR. We backtrack by repeatedly selecting the first vertex which is anticlockwise from the right

boundary of C̄vR
0 in C̄u

2 . This is done until we can only see congested vertices in the direction of vR as

this would indicate that we are at the vertex where we began our reverse search (see Section 5.3.2.3).

Once at this point, we can continue following the same steps described in the first paragraph.

When we reach γR, we can move on to the next point in O.

Case 2.2: Being in a different negative cone to γR implies that we are in C̄vR
1 . Recall that our algorithm

may follow the right boundary of CvR
0 upwards if we were attempting to move into CvR

0 . This may result
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in us being at a vertex which is not immediately visible from f+
vR

, the vertex we entered C̄vR
1 from. Out

of vertices in C̄u
0 or Cu

2 , we backtrack by selecting the first vertex in a clockwise direction from the right

boundary of CvR
0 until we are connected to f+

vR
. If we see f+

vR
, we traverse to it as this will take us back

into CvR
2 . We can now enter Case 3.

5.4.1.3 Case 3

If we are next to TγRvR , we must be in the region of CvR
2 which is not covered by TγRvR . Thus, we

can backtrack by taking vertices that are closest to the right boundary of C̄vR
0 until we can see f−

vR
, the

vertex in C̄vR
0 we entered our current cone from. If we see f−

vR
, traverse to it and enter Case 2.

If we are not next to TγRvR , we must be in CvR
0 . We reached this point either directly from f+

vR
(see

Figure 5.17(a)), or through some vertex in C̄vR
1 (see Figure 5.17(b)).

(a) Getting to u from f+
vR (b) Getting to u from C̄vR

1

FIGURE 5.17. Two methods of getting to u ∈ CvR
0
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In the former case, we can immediately traverse f+
vR

and enter Case 2. For the latter, pick the lowest

visible vertex in C̄vR
1 and traverse to it. Since we are now in a negative cone of vR, we enter Case 2.

5.4.2 Negative routing

Without loss of generality, let us assume γR ∈ CvR
0 and that we were in the process of searching around

the polygon in a clockwise direction. Since we also consider region A in our routing, we can rewrite the

three cases as the following:

(1) We are in TvRγR ∪A.

(2) We are outside of TvRγR ∪A and in a negative cone of vR.

(3) We are outside of TvRγR ∪A and in a positive cone of vR.

5.4.2.1 Case 1

Akin to Section 5.4.1.1, we split Case 1 into two subcases:

CASE 1.1: δR = ∅

CASE 1.2: δR ̸= ∅

Case 1.1: This case is the most simplistic as it indicates that our algorithm has never left TvRγR . Hence,

we can return to γR by travelling to vertices in TvRγR along the right boundary of TvRγR in the direction

of γR.

Case 1.2: This case means we must have re-entered TvRγR ∪A and hence, δ′R ̸= ∅. Regardless of if we

are in TvRγR or A, we locate δ′R by selecting vertices that are closest to the right boundary of TvRγR in

the direction of v′. If we are in TvR , we prioritise selecting uncongested vertices in TvR before taking

any in A and vice-versa. However, we also ensure that we never pick a vertex which is higher than δ′R

as this may cause us to wrongly traverse past δ′R. For example, in Figure 5.18, let us assume we are

currently at vertex u. While we would normally traverse to vertex v since it is in TvRγR , vertex v is

above δ′R and is thus, not on our exploration path. Hence, in this instance, we should pick vertex w as it

is the only other vertex which is connected to u and is below δ′R.
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v′

vR

u

δ′R

v

w

FIGURE 5.18. Locating δ′R from a vertex u ∈ TvRγR . Our exploration path is repre-
sented by the curved dashed gray line.

Once we reach either δ′R, we select the highest vertex in C̄u
1 to traverse to and enter Case 2.

5.4.2.2 Case 2

We follow the same criteria and construction instructions for A as outlined in Section 3.2.2. This case

corresponds to when we are outside of TvRγR ∪ A and in a negative cone of vR. This leads us to one of

two possible cases:

CASE 2.1: We are in C̄vR
1 .

CASE 2.2: We are in C̄vR
0 .

Case 2.1: We can backtrack by selecting vertices that are closest to the boundary of TvRγR ∪A in either

C̄u
2 or Cu

0 until we see γR or δR in TvRγR ∪A. If we see γR, proceed to it and move on to processing the

next point in O. Otherwise, if we see δR, proceed to it and enter Case 1 as that means we are re-entering

TvRγR ∪A.

Case 2.2: We observe that C̄vR
0 is guaranteed to be a target cone of vR when γR ∈ CvR

0 . As a result, we

should be immediately connected to f̃+
vR

, the vertex in CvR
2 we entered C̄vR

0 from. Thus, we traverse to

it and enter Case 3.
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5.4.2.3 Case 3

If we are in a positive cone which is outside of TvRγR ∪A, we are in one of two cases:

CASE 3.1: We are in CvR
1 .

CASE 3.2: We are in CvR
2 .

Case 3.1: In a similar vein to Case 2.2, CvR
1 is a guaranteed target cone of vR and thus, we are immedi-

ately connected to f̃+
vR

. Since f̃+
vR

is located in CvR
2 , we enter Case 3.2 once we traverse to it.

Case 3.2: This case continues to break into two separate subcases as there are two ways we could have

reached CvR
2 :

CASE 3.2.1: We crossed into CvR
2 from some vertex in CvR

0

CASE 3.2.2: We crossed into CvR
2 from some vertex in C̄vR

1

A similar situation occurs during Section 5.4.1.3 and is depicted in Figure 5.17. We can determine which

subcase we are in by checking f−
vR

and f+
vR

. Recall that these variables corresponded to the last vertex

on our exploration path before leaving a negative cone or positive cone respectively. Thus, if f+
vR

̸= ∅,

we are in Case 3.2.1 and if f+
vR

= ∅, we are in Case 3.2.2.

Case 3.2.1: We should be immediately connected to f+
vR

as to get from CvR
0 directly to CvR

2 , we must

have traversed to the closest vertex to vR in CvR
2 . As previously established in Section 5.3.3.3, the

closest vertex to vR must be able to see vertices in CvR
1 or C̄vR

0 . Therefore, our algorithm would not

have needed to move from this vertex to any other vertex in CvR
2 . We should traverse to f+

vR
and enter

Case 1.

Case 3.2.1: If CvR
2 is a valid target cone, we are connected to connected to f−

vR
so we should traverse to

it and enter Case 2. If not, however, we cannot guarantee that we are connected to f−
vR

. Recall that if

CvR
2 was not a valid target cone, then we may have traversed to other vertices in TvRf̂+

vR
. In this case, our

objective is to find f̂+
vR

. This is done by selecting the first vertex anticlockwise from the right boundary

of C̄vR
0 in the direction of f̂+

vR
. Once we can see f̂+

vR
, we can traverse to f−

vR
. Recall that A ∈ C̄vR

1 but

is considered as part of Case 1. Hence, if f−
vR

∈ A, enter Case 1 and Case 2 otherwise.
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5.5 Variant B

We now introduce the second variant of this algorithm, which employs the linear spiral search method

introduced by Baeza-Yates et al. (1993). The primary motivation for introducing this variant is to en-

sure that our algorithm does not product an uncongested path that is arbitrarily worse than the shortest

uncongested path around the polygon. Recall that Variant A will explore out a distance of E/3 on one

side. Without sufficient information, the only statement we can make about the length of the path on the

other side of the polygon is that it must be at least P
2 . This is because we begin our search on the side

of the polygon with the smaller perimeter after projecting s and t on it (see Figure 5.4). Hence, to get

around the polygon on the other side, the shortest path must be at least P
2 . However, allocating a budget

of E/3 may not be ideal if E is a fair amount larger than the perimeter of the polygon, specifically when

E ≥ 13.1
2 P .

While the main details for the search and routing phase remain consistent, we now conduct a doubling

search over both sides of the polygon instead of exploring each side once with M budget per side. We

begin by searching the side with the smaller perimeter with a budget of P . If an uncongested path to t

is not found, we return to s before searching 2P on the other side and continue to double this budget on

alternating sides until we reach a cap of E/16. Our final search on both sides will have a budget of E/4

and if a path still has not been found, we return False.

s P
2P

4P

FIGURE 5.19. Visualisation of the linear spiral search strategy.

To optimise our algorithm, we could consider maintaining an additional variable to denote if a particular

side has no uncongested vertices to further explore. This naturally implies that continuing to search

on that particular side will be fruitless. As a result, this should prompt our algorithm to terminate the

doubling search on both sides and reallocate all remaining exploration budget to searching the other

side.

5.5.1 Return phase

The main changes occur in the return phase as we will now enter this phase more frequently than before.

Previously, in Section 5.4, we used the SECOND variable to limit using the return phase once since we
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only explored each side a single time. However, the linear spiral search employed in variant B involves

searching both sides of the polygon O(log(E)) times. As a result, each time we enter the return phase,

we will check what the current budget M we have just run out of is. If M = E/4, we now set SECOND

to True to indicate that the next search is the final search of distance E/4. If we enter the return phase

and SECOND is True, we return False to reflect that we were unsuccessful in finding a path.



CHAPTER 6

Convex polygon routing analysis

6.1 Approximation ratio

To evaluate the effectiveness of our routing algorithm presented in Chapter 5, we analyse several cases

where we are able to find an uncongested path around the polygon. We make the following claim:

THEOREM 4. If an uncongested path is found, the convex polygon routing algorithm produces a 13.1-

approximation of the shortest uncongested path when using Variant A and a 17.5-approximation when

using Variant B.

Let s be the vertex we start from. Without loss of generality, let t ∈ Cs
0 when routing positively and

t ∈ C̄s
0 when routing negatively. Routing in purely uncongested sections of the graph are not of interest

as they would only improve our approximation ratio. Hence, we assume we immediately encounter the

congested convex polygon. Let us assume that only one extreme point vR separates our current position

from t, with t being located arbitrarily close to vR in either C̄vR
0 (when routing negatively) or CvR

0

(when routing positively). This dually implies that the congested region is to the left of s. We consider

the following three cases:

(1) The shortest uncongested path stays completely within the canonical triangle of s and vR.

(2) The shortest uncongested path is entirely outside of the canonical triangle of s and vR.

(3) The shortest uncongested path is partially in the canonical triangle of s and vR.

In the case of negative routing, we will treat region A as part of the canonical triangle. We structure our

analysis by first presenting the case that is responsible for the approximation ratios presented in Theorem

4. To prove that this yields the highest approximation ratio, we will then unpack the remaining subcases

from the 3 cases above and show that all of them have a smaller approximation ratio.

99
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To maximise the path length produced by our algorithm, we assume that our search is not cut short by

a lack of vertices to explore. Furthermore, we assume that we only locate this path to t at the end of

our search. For Variant A, this corresponds to finding the path after traversing E/3 on the second side,

following an earlier search of length 2E/3. For Variant B, the path would be found on the final search

of length E/4 after having already explored 3E/4. We begin our analysis with Variant A.

6.1.1 Variant A

First, we present the case with the highest approximation ratio. When the shortest path is partially in

the canonical triangle of s and vR (Case 3) and when we are routing negatively, it is difficult to locally

determine when to re-enter the canonical triangle of s and vR. We observe that an analysis of an identical

situation has previously been covered in Section 4.3. Since our algorithm shares the same criteria for

selecting vertices on its exploration path as the half-plane routing algorithm when both are routing

negatively (see Section 3.2.2), we can apply the findings from Section 4.3 to our current algorithm.

By Theorem 2, we get that routing negatively will be a 13.1
3 -approximation of the shortest uncongested

path. In the context of routing around a convex polygon, this is the approximation ratio for the path

found on this particular side of the polygon, with respect to the E
3 budget assigned to this side only.

However, the total length of our exploration path is E as we assumed our algorithm begins by searching

the wrong side of the polygon. Thus, the shortest path is actually of length E
3· 13.1

3

= E
13.1 , which results

in a 13.1-approximation.

Recall that we use Variant A if E ≤ 13.1
2 P . We now show that this specific threshold was chosen to

ensure that Variant A produces a 13.1-approximation. As previously established, the shortest path on

the second side of the polygon that we search will be at least P
2 . Assuming that we first search the wrong

side and then locate this shortest path, we travel the following distance:

2E

3
+

13.1

3
· P
2

≤ 13.1

3
· P +

13.1

3
· P
2

=
39.3

3
· P
2

= 13.1 · P
2

This ensures that our algorithm will remain a 13.1-approximation when using Variant A. We will now

examine the remaining cases and show that none of them yield a higher approximation ratio. Within each

case, we split the analysis into positive and negative routing as they produce different approximation

ratios.
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6.1.1.1 Case 1

To start, we make the following observation:

LEMMA 14. If there exists an uncongested path to t in the canonical triangle of s and vR, we cannot

see any congested vertices from outside of the canonical triangle.

PROOF. Let us assume that there exists an uncongested s− t path in the canonical triangle of s and

vR, which we will refer to as TvRs. Assume we see a congested vertex v from outside of TvRs at some

vertex u. If we can see v, then (u, v) is an edge that exists. Since u is outside of TvRs, this edge must

span from the convex hull of the polygon to the opposite side of TvRs (see Figure 6.1). The planarity of

the half-Θ6-graph enforces that no edges can cross one another. Therefore, there cannot exist any paths

between u and v, which implies that all paths in TvRs must go through some part of congested region.

This contradicts the assumption of an uncongested path in TvRs. Hence, we conclude our proof that we

are not able to see any congested vertices if there exists an uncongested path in TvRs.

FIGURE 6.1. Example of seeing a congested vertex at a vertex u outside of TvRs. The
blue dashed line shows our algorithm’s exploration path.

□

Positive routing: We consider the case where the shortest uncongested path stays completely within

the canonical triangle. Let us assume the shortest path traverses directly from s to some vertex w ∈
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TsvR ∩ CvR
2 . Let w also be directly connected to t ∈ CvR

0 which is arbitrarily close. This bounds the

length of the shortest path by |svR|. Let s also be connected to a vertex u which in C̄s
1 . Since staying

in TsvR would mean that we are following the shortest path and improve our approximation ratio, we

assume that we leave TsvR at s. Our algorithm may wrongly choose to go to u as our selection criteria

favours selecting the vertex which forms the smallest angle relative to the right boundary of Cs
0 . Thus,

we let u form a slightly smaller angle than the vertex w ∈ TsvR . We note that Section 5.3.2.1 describes

an exception where we would choose the vertex in TsvR if it was also in CvR
2 , regardless of the angle it

forms. To analyse worst-case and ensure our algorithm incorrectly leaves TsvR , we let some other vertex

lie on sw which is just outside of CvR
2 .

By Lemma 14, our algorithm can only see uncongested vertices and will subtract from B = |svR| at

every step outside of TvRs. This constrains the maximum distance that we can traverse out of TvRs to

be |svR|. Since w ∈ TsvR and u is in the cone immediately adjacent to it, the maximum angle created

between sw and su is 2π
3 (see Figure 6.2). We observe that as we increase the angle between sw and su,

the length of our algorithm’s path will increase. As △swu is an isosceles triangle where |sw| = |su|,

we derive the following expression for the length of our path when setting ∠wsu = 2π
3 :

|su|+ |uw| = |svR|+
sin(2π3 )

sin(π6 )
· |svR| = (1 +

√
3)|svR|

Given that the length of the shortest path is |st| = |svR|, the path that we produced is a (1 +
√
3)-

approximation. Since we started exploring this side of the polygon with a budget of E/3, the length

of the shortest path is E
3+3

√
3
. This results in a (3 + 3

√
3) ≈ 8.2-approximation. We observe that this

approximation ratio holds even if the edges were subdivided. This is because the budget of B enforces

a maximum horizontal distance of |svR|, regardless of the number of vertices on our algorithm’s path

outside of TsvR . In addition, placing any vertex in TvRs will improve the approximation ratio since it

results in a longer shortest path.



6.1 APPROXIMATION RATIO 103

FIGURE 6.2. Worst-case approximation ratio for Case 1.

Negative routing: We argue that routing negatively will yield a larger approximation ratio. Recall that

when routing negatively, our algorithm will stay within TvRs for as long as possible by repeatedly se-

lecting the first vertex anticlockwise from the right boundary of TvRs. Since there exists an uncongested

path in TvRs, our algorithm will remain in TvRs for the entirety of its search on this side of the polygon.

Applying Lemma 1, we can conclude that the length of our path in TvRs is 5√
3
|st|. Since the shortest

path is lower-bounded by |st|, this leads to a 5√
3
-approximation and when considering the entire budget

E, a 15√
3
≈ 8.7-approximation. Given that this a worse approximation ratio than positive routing, we

consider the approximation ratio for Case 1 to be 8.7.

6.1.1.2 Case 2

When the shortest path is entirely outside of the canonical triangle of vR and s, our algorithm could

follow a path either in the canonical triangle or outside of it. Let us first explore the latter case. It was

shown earlier in Section 4.3 that staying close to the canonical triangle of s and t when we are outside of

it can yield sub-optimal paths. When routing positively, Theorem 2 states that the approximation ratio

is 2. We note that if A exists and is non-empty, we obtain the worst-case approximation ratio. For this

reason, we prefaced this analysis by stating that we treat A as part of the canonical triangle in the case of

negative routing, meaning that the path in Case 2 is not in A. This has also been analysed in Section 4.3.

When routing negatively outside of the canonical triangle of s and t and A does not exist, Lemma 13
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states that the approximation ratio is 2.2. This leads to an approximation ratio of 6 and 6.6 for positive

and negative routing respectively.

However, we show that this is not the worst approximation ratio for Case 2. We now explore the scenario

where our algorithm remains in the canonical triangle of vR and s until there are no uncongested vertices

to traverse to.

Positive routing: The lower-bound on the length of the shortest path is |st| = |svR| and is attainable by

placing a vertex w1 arbitrarily close to s in C̄s
1 and another vertex w2 in Cs

2 , which the closest vertex to

vR in CvR
2 . Vertex w2 should be connected to t ∈ CvR

0 . Let u be a vertex situated in the leftmost corner

of TsvR , which is the last vertex in TsvR that our algorithm traverses to before leaving TsvR . We ensure

there is no path from u to w2 by constructing the graph such that u is blocked by some congested vertex

in Cu
0 and C̄u

1 . This construction is visualised in Figure 6.3.

FIGURE 6.3. Worst-case approximation ratio for Case 2. The blue arrow indicates the
reverse search phase.

This leads to our algorithm entering the reverse search phase and traversing to w1. Since w1 is arbitrarily

close to s and u ∈ TsvR , we can apply Lemma 3 and bound the length of |uw1| with |svR|. This gives

us the following bound on our path length:

|su|+ |uw1|+ |w1w2|+ |w2t| ≤ |st|+ |st|+ |st| = 3|st|

This results in an approximation ratio of 3. This means that the length of the shortest path in Case

2 is E
9 , which is a 9-approximation. We now briefly argue why this is the worst-case configuration

for positive routing, given our algorithm stays inside TsvR . We observe that moving w1 anywhere in
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C̄s
1 will either decrease |uw1| or cause the length of the shortest path to grow faster than the length

of |uw1|. Let us consider w′
1, an alternative position for w1. Using triangle inequality, we bound

|uw1|′ ≤ |su|+ |sw′
1| ≤ |st|+ |sw′

1|. We use this bound to express the following ratio of the length of

our path over the length of the shortest path:

|st|+ |st|+ |sw′
1|+ |w′

1t|
|sw′

1|+ |w′
1t|

= 1 +
2|st|

|sw′
1|+ |w′

1t|
(6.1)

Since |st| ≤ |sw′
1|+ |w′

1t|, it is evident that Equation 6.1 is at most 3 and occurs when w′
1 = w1. As for

the position of u, we use Lemma 3 to argue that placing u anywhere other than in one of the corners of

TsvR will result in a shorter path and a smaller approximation ratio. We also observe that no vertex can

be in TsvR ∩ Cw1
0 as that would cause w1 to be connected to it instead of w2.

s
w1

u
w2

t

vR

w′
1

FIGURE 6.4. Alternative positions for w1 result in a lower approximation ratio.

Negative routing: We show that we are able to attain the same approximation ratio as negative routing

in Case 1. Once again, we can use Lemma 1 to bound the path within TvRs from s to the furthest

uncongested vertex we can reach with 5√
3
|st|. Let us assume that our algorithm has reached vertex

u ∈ TvRs. To attain the bound of |st| on the shortest path outside of TvRs, we can place a line of vertices

along the right boundary of TvRs which directly connect to t. However, for this to occur, we note that

s has to be at the right corner of TvRs. This indicates that |st| is lower-bounded by the edge length of

TvRs. As a result, we can use Lemma 2 for a tighter bound of 2.5|st| of our path to u.

Notably, we also ensure that there is at least one vertex w1 on the shortest path which is in C̄vR
1 and is

below u. This ensures that our algorithm converges with the shortest path at w1 instead of the shortest
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path converging with our algorithm’s path at u (see Figure 6.5). This results in an approximation ratio

of 2.5, which is a 7.5-approximation when considering our entire budget of E spent.

s

u

w1

t

vR

FIGURE 6.5. Worst-case approximation ratio for negative routing in Case 2. The blue
dashed line represents our algorithm’s exploration path to u, the lowest uncongested
vertex we can reach.

We now conclude that the approximation ratio for Case 2 is 9.

6.1.1.3 Case 3

We have established that routing negatively in this case produces our final approximation ratio. For

completeness, we will now consider routing positively. We observe that we can use the same analysis as

in Case 2 (see Section 6.1.1.2). This is because if we place w2 in TsvR , the shortest uncongested path

satisfies leaving and re-entering TsvR . This results in a 9-approximation, as shown before.
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s
w1

u
w2

t

vR

FIGURE 6.6. Worst-case approximation ratio for positive routing in Case 3.

We observe that moving vR, t and w2 towards the perpendicular bisector of TsvR will improve the ap-

proximation ratio. This will cause u to be closer than w1 is to w2 in Cw2
1 , creating an edge between them

and decreasing the length of our algorithm’s path.

6.1.2 Variant B

The main difference between Variant A and Variant B is that Variant B does not immediately explore

with a budget of E/3. Instead, it iteratively increases the budget to a maximum of E/4 on both sides.

Section 6.1.1 demonstrates that Case 3 dominates the approximation ratio with a 13.1-approximation.

As a result, substituting in E/4 instead of E/3, we get a shortest path length of E
52.4
3

≈ E
17.5 . As we

assume we expend the entirety of E, we get an approximation ratio of 52.4
3 ≈ 17.5. This concludes our

proof for Theorem 4.

A corollary of Theorem 4 is the following:

THEOREM 5. If an uncongested path is not found, the shortest uncongested path must have a length of

at least 3E
52.4 .

Instead of finding a path, we assume we run out of our main budget a short ϵ distance away from t. Since

Theorem 4 shows that the length of the shortest path must be at least 3E
52.4 . This is the best guarantee our

algorithm can make about the length of an undiscovered path.



CHAPTER 7

Conclusion and future work

In this thesis, we studied the problem of local routing in the half-Θ6-graph under conditions of conges-

tion. We provided a model for congestion in Chapter 2 and presented two deterministic O(1)-memory

local routing algorithms for it.

We began by assuming the congested region is contained within a half-plane. For this case, we provided

a deterministic local routing algorithm in Chapter 3 which is 4-competitive when routing positively and

4.9-competitive when routing negatively. Moreover, we showed that in the case when our algorithm

finds an uncongested s− t path, the path we produce is 2-competitive when routing positively and 4.4-

competitive when routing negatively. In this case, we proved that this is the best approximation ratio

that any k-local routing algorithm can achieve.

However, when the congested region becomes a convex polygon, we proved that no local routing algo-

rithm can do better than an O(c)-approximation of the shortest path, where c is the congestion factor.

Nonetheless, finding s − t paths that entirely avoid the congested region is an area of ongoing interest,

largely motivated by practical use cases. Using our half-plane routing algorithm as a foundation, we

designed a deterministic local routing algorithm for this problem and introduce two variants, Variant A

and Variant B. This algorithm takes in a parameter which is a constraint on the amount of exploration

we can do to find an uncongested path around the polygon. We showed that in the case where an uncon-

gested path is found, Variant A and Variant B produce a 13.1-approximation and 17.5-approximation of

the shortest uncongested path respectively. On the contrary, when our algorithm is unable to find a path,

we can guarantee that the shortest uncongested path is at least a length of E
17.5 , where E is the input

parameter.

108
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7.1 Future work

There exist other open problems which can be studied in the congested setting. To the best of our

knowledge, local routing on other classes of Θ-graphs and spanners in the presence of congestion has

not been studied before and thus, could be an avenue for further work. We now offer a few ideas for

other directions.

7.1.1 Different models for congestion

In Chapter 2, we modelled congestion by multiplying the edge weight of all edges connected to a con-

gested vertex by some congestion factor c. This means that edges which are not entirely contained within

the congested region will still be subject to the multiplicative factor. An alternative idea is to only apply

the congestion factor to the portion of the edge within the congested region. This is a looser constraint

as it means that an algorithm would be able to traverse to vertices on the border of the congested region

from some vertex outside of the congested region without paying any additional cost. We conjecture

that this will decrease the approximation ratio for our half-plane algorithm. For the convex polygon al-

gorithm, some minor modifications may be required as a path that traverses to one of the extreme points

will now be considered an uncongested path when it previously was not.

Another idea is modelling vertices with different congestion factors instead of all congested vertices

sharing the same congestion factor. This problem may be especially challenging if an algorithm only

has access to local information as it becomes impossible to bound a path that traverses to non-visible

congested vertices.

7.1.2 Routing in the presence of non-convex polygons

The congested region can also be generalised to the shape of a non-convex polygon. Unfortunately,

our finding that no local routing algorithm can do better than an O(c)-approximation (Theorem 3) still

holds. When s and t are both located outside of the convex hull of the polygon, we can simply convert

the polygon into a convex polygon using any convex hull algorithm and apply our routing algorithm

introduced in Chapter 5. On the other hand, the problem grows increasingly complicated if either s or

t is contained in the convex hull of the polygon. We posit that triangulating the polygon and using the

algorithm proposed by Korman et al. (2017) for finding the shortest path in polygons may be a good

starting point. These vertices in the shortest path may serve as auxiliary vertices which we would want
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to route towards. However, we conjecture that using a similar approach to this cannot be achieved with

constant memory as there may be O(n) vertices on the shortest path within a polygon.

7.1.3 Defeating the Ω(c)-approximation barrier

Theorem 3 states that no local routing algorithm can do better than an O(c)-approximation when the

congested region is in the shape of a polygon. While this may be disheartening news for all cases where

the shortest path cuts through some section of the polygon, we hypothesize that this limitation can be

overcome with some assumptions about the aspect ratio of the polygon or if additional information about

the graph is known.



Bibliography

R.A. Baeza-Yates, J.C. Culberson, and G.J.E. Rawlins. 1993. Searching in the plane. Information and
Computation, 106(2):234–252.

Ron Banner and Ariel Orda. 2005. Multipath routing algorithms for congestion minimization. In Raouf
Boutaba, Kevin Almeroth, Ramon Puigjaner, Sherman Shen, and James P. Black, editors, NETWORK-
ING 2005. Networking Technologies, Services, and Protocols; Performance of Computer and Commu-
nication Networks; Mobile and Wireless Communications Systems, pages 536–548. Springer Berlin
Heidelberg.

Luis Barba, Prosenjit Bose, Jean-Lou De Carufel, André van Renssen, and Sander Verdonschot. 2013.
On the stretch factor of the theta-4 graph. In Frank Dehne, Roberto Solis-Oba, and Jörg-Rüdiger
Sack, editors, Algorithms and Data Structures, pages 109–120. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Nicolas Bonichon, Prosenjit Bose, Jean-Lou Carufel, Ljubomir Perković, and André Renssen. 2017.
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